
Noname manuscript No.
(will be inserted by the editor)

An Empirical Characterization of Bad Practices in
Continuous Integration

Fiorella Zampetti · Carmine Vassallo ·
Sebastiano Panichella · Gerardo
Canfora · Harald Gall · Massimiliano Di
Penta

Received: date / Accepted: date

Abstract Continuous Integration (CI) has been claimed to introduce several
benefits in software development, including high software quality and reliabil-
ity. However, recent work pointed out challenges, barriers and bad practices
characterizing its adoption. This paper empirically investigates what are the
bad practices experienced by developers applying CI. The investigation has
been conducted by leveraging semi-structured interviews of 13 experts and
mining more than 2,300 Stack Overflow posts. As a result, we compiled a
catalog of 79 CI bad smells belonging to 7 categories related to different di-
mensions of a CI pipeline management and process. We have also investigated
the perceived importance of the identified bad smells through a survey in-
volving 26 professional developers, and discussed how the results of our study
relate to existing knowledge about CI bad practices. Whilst some results, such

Fiorella Zampetti
University of Sannio, Via Traiano, 9, Benevento, Italy
E-mail: fiorella.zampetti@unisannio.it

Carmine Vassallo
University of Zurich, Binzmuehlestrasse 14, Zurich, Switzerland
E-mail: vassallo@ifi.uzh.ch

Sebastiano Panichella
Zurich University of Applied Sciences, Obere Kirchgasse 2 / Steinberggasse 12/14, 8400
Winterthur, Switzerland
E-mail: panc@zhaw.ch

Gerardo Canfora
University of Sannio, Via Traiano, 9, Benevento, Italy
E-mail: canfora@unisannio.it

Harald Gall
University of Zurich, Binzmuehlestrasse 14, Zurich, Switzerland
E-mail: gall@ifi.uzh.ch

Massimiliano Di Penta
University of Sannio, Via Traiano, 9, Benevento, Italy
E-mail: dipenta@unisannio.it



2 Fiorella Zampetti et al.

as the poor usage of branches, confirm existing literature, the study also high-
lights uncovered bad practices, e.g., related to static analysis tools or the abuse
of shell scripts, and contradict knowledge from existing literature, e.g., about
avoiding nightly builds. We discuss the implications of our catalog of CI bad
smells for (i) practitioners, e.g., favor specific, portable tools over hacking,
and do not ignore nor hide build failures, (ii) educators, e.g., teach CI culture,
not just technology, and teach CI by providing examples of what not to do,
and (iii) researchers, e.g., developing support for failure analysis, as well as
automated CI bad smell detectors.

Keywords Continuous Integration · Empirical Study · Bad Practices ·
Survey · Interview

1 Introduction

Continuous Integration (CI) (Beck, 2000; Booch, 1991) entails an automated
build process on dedicated server machines, with the main purpose of detecting
integration errors as early as possible (Beller et al., 2017; Duvall et al., 2007;
St̊ahl and Bosch, 2014b). In certain circumstances, the next step is Continuous
Delivery (CD), in which code changes are also released to production in short
cycles, i.e., daily or even hourly (Amazon, 2017; Humble and Farley, 2010).

Industrial organizations that moved to CI reported huge benefits, such
as significant improvements in productivity, customer satisfaction, and the
ability to release high-quality products through rapid iterations (Chen, 2017).
The undisputed advantages of the CI process have motivated also many Open
Source Software (OSS) contributors (Hilton et al., 2016; St̊ahl and Bosch,
2014b) to adopt it, promoting CI as one of the most widely used software
engineering practices (Chen, 2017; Hilton et al., 2016).

Despite its increasing adoption, the heavy use of automation in CI makes
its introduction in established development contexts very challenging (Chen,
2017; Hilton et al., 2016). For this reason, in recent work researchers investi-
gated the barriers (Hilton et al., 2017) and challenges (Chen, 2017) characteriz-
ing the migration to CI. They found that developers struggle with automating
the build process as well as debugging build failures (Hilton et al., 2017).

Also, once CI is in place, it might be wrongly applied, thus, limiting its
effectiveness. Previous work (Duvall et al., 2007; Duvall, 2010; Humble and
Farley, 2010; Savor et al., 2016) highlights some bad practices in its exer-
cise concerning commits frequency, management of built artifacts and overall
build duration. In this context, Duvall (2011), by surveying related work in
literature, created a catalog featuring 50 patterns (and their corresponding
antipatterns) regarding several phases or relevant topics of the CI process.

In summary, previous work discussed the advantages of CI, outlined pos-
sible bad practices and identified barriers and challenges in moving from a
traditional development process to CI. However, to the best of our knowl-
edge, there is no prior investigation aimed at empirically analyzing what bad
practices developers usually incur when setting and maintaining a CI pipeline.



An Empirical Characterization of Bad Practices in Continuous Integration 3

This paper aims at empirically investigating what bad practices develop-
ers incur when using CI in their daily development activities. This is done
through (i) semi-structured interviews with 13 practitioners directly involved
in the management and use of CI pipelines of 6 medium/large companies, and
(ii) manual analysis of over 2,300 Stack Overflow (SO) posts, all related to
CI topics. By relying on such sources of information and using a card sorting
approach (Spencer, 2009), we derived a catalog of 79 CI bad smells organized
into 7 categories spanning across the different dimensions of a CI pipeline
management (e.g., Repository, Build Process Organization, Quality Assur-
ance, Delivery). Afterward, we have assessed the perceived importance of the
79 bad smells through a survey, which involved 26 developers working in 21
different companies.

To document the identified CI bad smells, we provide traceability (in our
dataset) between the catalog and the SO posts and interviews’ sentences. For
example, the CI bad smell “Pipeline related resources (e.g., configuration files,
build script, test data) are not versioned” is originating from a SO post1 where
a user asked:

. . . Do you keep all your CI related files checked in with your project
source? How would you usually structure your CI and build files?

whereas the CI smell “Quality gates are defined without developers consid-
ering only what dictated by the customer” was inferred from an interview
where developers reported they were not satisfied by their static analysis, and
mentioned that:

. . . in general when we use SonarQube we configure only those checks
that the customers feel important.

While a catalog of CI patterns and corresponding antipatterns exist (Du-
vall, 2011), this paper aims at empirically inferring and validating bad practices
through a reproducible process, which has manifold advantages: (i) it allows
us to investigate what is the current perception of CI bad practices (based on
SO posts and interviews with experts), (ii) it allows others to replicate our
process, and, possibly, to improve our catalog or even confute our results, and
(iii) it allows us to perform an unbiased comparison between CI bad smells
emerged from our study and what stated in Duvall’s catalog. To investigate
(i) the correspondence or contradiction between what known in literature and
what we observed in the reality, and (ii) cases in which developers follow a bad
practice because they aim at pursuing trade-offs between conflicting goals, we
have analyzed and discussed the relationships between the CI bad smells we
identified, and the pattern/antipatterns of Duvall’s catalog (Duvall, 2011).
Finally, the study shows that different bad smells (including those matching
Duvall’s antipatterns) have a different degree of perceived importance.

The paper is further organized as follows. Section 2 provides the context
of our study by discussing the related literature. Section 3 defines the study,

1 https://stackoverflow.com/questions/1351755



4 Fiorella Zampetti et al.

its research questions, and details the study methodology. Section 4 reports
and discusses the study results, while Section 5 discusses the threats to the
study validity. The study implications are outlined in Section 6, while Section 7
concludes the paper.

2 Related Work

This section discusses related work on CI and CD, going more in-depth on
bad practices and barriers in their usage. Before discussing related work, we
clarify the terminology used hereinafter:

– We use the term “bad smells” similarly to previous work to denote “symp-
toms of poor design or implementation choices” (Fowler et al., 1999b). In
our case, “CI bad smells” are symptoms of poor choices in the application
and enactment of CI principles.

– We use the term “bad practice” when we generically discuss the bad ap-
plication of CI principles, without referring to a specific problem.

– Finally, when referring to the catalog by Duvall (2011), we use the terms
“pattern”/“antipattern” to be consistent with the terminology used there.
However, in this paper, Duvall’s antipatterns and our CI bad smells have
the same meaning.

2.1 Studies on Continuous Integration and Delivery Practice.

Many researchers have studied the CI/CD practices adopted in industry and
open source projects (Deshpande and Riehle, 2008; Hilton et al., 2016; St̊ahl
and Bosch, 2014a,b; Vasilescu et al., 2015). Hilton et al. (2016) conducted an
extensive study on the usage of CI infrastructure and found that CI is currently
very popular in OSS. St̊ahl and Bosch (2014a) pointed out that in industry
there is not a uniform adoption of CI. More specifically, they have identified
the presence of different variation points in the CI term usage. Similarly, we in-
volved different companies, varying in size and domain, to guarantee diversity
of respondents and reliability of our results. Other researchers have focused
the attention on the impact of CI adoption on both code quality and devel-
opers’ productivity. Vasilescu et al. (2015) showed how CI practices improve
developers productivity without negatively impacting the overall code quality.
From a different perspective, Vassallo et al. (2016) investigated, by surveying
developers of a large financial organization, the adoption of the CI/CD pipeline
during development activities, confirming what known from existing literature
(e.g., the execution of automated tests to improve the quality of their prod-
uct), or confuting them (e.g., the usage of refactoring activities during normal
development).

While the studies mentioned above investigated CI practice and served as
inception for our work (Section 3.2.1), our perspective is different i.e., identi-
fying and categorizing specific CI problems into a catalog of CI bad smells.



An Empirical Characterization of Bad Practices in Continuous Integration 5

Concerning CD practices, Chen (2017) analyzed four years’ CD adoption
in a multi-billion-euro company and identified a list of challenges related to the
CD adoption. Also, Chen identified six strategies to overcome those challenges
such as (i) selling CD as a painkiller, (ii) starting with easy but important
applications and (iii) visual CD pipeline skeleton. Savor et al. (2016), by an-
alyzing the adoption of Continuous Deployment in two industrial (Internet)
companies, found that the CD adoption does not negatively impact developer
productivity, even when the project increases in terms of size and complexity.

2.2 Continuous Integration Bad Practices and Barriers.

Duvall et al. (2007) identified the risks that can be encountered when using
CI, e.g., lack of project visibility or the inability to create deployable software.
Such risks highlighted the need for (i) a fully automated build process, (ii)
a centralized dependencies management to reduce class-path and transitive
dependencies’ problems, (iii) running private builds and (iv) the existence of
different target environments on which deploy candidate releases.

Hilton et al. (2017) investigated what barriers developers face when mov-
ing to CI, involving different and orthogonal dimensions namely: assurance,
security, and flexibility. For instance, they found that developers do not have
the same access to the environment as when they debug locally and their
productivity decreases when dealing with blocking build failures.

Humble and Farley (2010), instead, set out the principles of software deliv-
ery and provided suggestions on how to construct a delivery pipeline (includ-
ing the integration pipeline), by using proper tools, automating deployment
and testing activities. Based on such principles, Olsson et al. (2012) explored
the barriers companies face when moving towards CD. More specifically, they
identified as barriers: (i) the complexity of environments (in particular of net-
work environments) where software is deployed; (ii) the need for shortening
the internal verification to ensure a timely delivery; and (iii) the need for ad-
dressing the lack of transparency caused by an incomplete overview of the
current status of development projects.

Our work shares with previous work the challenges encountered when ap-
plying CI, but also CD. However, the observation perspective and the stage
in which the problems are observed are different. Indeed, we do not look at
problems encountered in the transition to CI or CD, while we infer CI bad
smells when CI is already being applied. However, in some cases, the conse-
quences of the bad smells we inferred share commonalities with the barriers
affecting the transition (Olsson et al., 2012). As an example, we foresee some
CI bad smells concerning (i) deployment of artifacts that have been generated
in a local environment, and (ii) deployment without a previous verification in
a representative, production-like environment. Also, our catalog features a bad
smell named “Authentication data is hardcoded (in clear) under VCS”, which
considers the lack of an appropriate and secure authentication when deploying
from a CI server. In summary, our findings indicate that, even when organi-



6 Fiorella Zampetti et al.

zations have performed a transition towards CI/CD, some issues previously
identified as barriers still arise, and some more can occur.

Duvall defined a comprehensive set of 50 patterns and related antipat-
terns regarding several phases or relevant topics in the CI/CD process (Duvall,
2011). In the catalog, it is possible to find bad habits concerning the versioned
resources, the way developers use to trigger a new build, test scheduling poli-
cies, and the use of feature branches. Duvall also highlighted the need for a
fully automated pipeline having a proper dependency management, a roll-back
release strategy and pre-production environments where the release candidate
should be tested. As we explained in the introduction, while it is not our intent
to show whether our catalog is better or worse than the one by Duvall, we (i)
define and apply an empirical methodology to derive CI bad smells, (ii) study
the developers’ perception of such bad smells, and (iii) finally, we discuss the
differences between the two catalogs, as well as cases in which a bad smell
present in both catalogs was considered as not particularly relevant by the
study respondents.

Vassallo et al. (2019a) proposed CI-Odor, an approach that detects the
presence of four CI antipatterns (slow build, broken master, skip failed tests,
and late merging) inspired by Duvall (2011) catalog. While they focused on the
automated detection of on some Duvall’s antipatterns, our aim is to investigate
what bad practices (beyond those by Duvall) are relevant for practitioners, also
to develop further detection strategies.

The phenomenon of slow builds was also investigated by Ghaleb et al.
(2019), finding that long builds (e.g., exceeding the 10 minutes rule-of-thumb (Du-
vall et al., 2007)) do not necessarily depend on the project size/complexity, but
may also be related to build configuration issues, such as multiple (and failed)
build attempts. To this extent, our catalog includes various kinds of build
configuration issues that can result in such a side effect. Also, Abdalkareem
et al. (2019) propose to optimize the build process by determining, through
a tool named CI-Skipper, which commits can be skipped. While this is not
necessarily related to the presence of CI bad smells, it may be a mechanism
useful to solve problems related to slow builds.

The work by Gallaba and McIntosh (2018) investigates configuration smells
for CI infrastructure scripts in Travis-CI (i.e., .travis.yml files), and pro-
poses Hansel and Gretel, two tools to identify and remove four types of antipat-
terns in Travis-CI configuration scripts. Such antipatterns are related to (i)
redirecting scripts into interpreters, (ii) bypassing security checks, (iii) having
unused properties in .travis.yml files, and (iv) having unrelated commands
in build phases. Also in this case, our work is complementary to such specific
detectors as provides a comprehensive, empirically-derived catalog of CI bad
smells along with developers’ perception of such bad smells.



An Empirical Characterization of Bad Practices in Continuous Integration 7

3 Empirical Study Definition and Planning

In the following, we define our study according to the Goal Question Metric
(GQM) paradigm (Basili, 1992).

The goal of this study is to identify the bad smells developers incur when
adopting CI and assess the perceived importance of such bad smells. The qual-
ity focus is the overall improvement of the CI process and its associated out-
comes, e.g., improving developers’ productivity and software reliability. The
perspective is of researchers interested, in the short term, to compile a catalog
of CI bad smells and use them for education and technology transfer purposes,
and in the long term to develop monitoring systems aimed at automatically
identifying CI bad smells, whenever this is possible. The context from which
we have inferred the catalog of CI bad smells consists of six companies (where
we interviewed 13 experts), and 2,322 discussions sampled from SO. To assess
the perceived importance of the identified CI bad smells, we have surveyed
26 CI practitioners belonging to 21 companies, that are not involved in the
previous phase of the study.

3.1 Research Questions

The study aims at addressing the following research questions:

– RQ1: What are the bad practices encountered by practitioners when adopt-
ing CI? This research question addresses the main goal of the study, which
is the empirical identification and categorization of CI bad practices. The
output of this categorization is a catalog of CI bad smells, grouped into
categories. As explained in the introduction, while a catalog of CI patterns
and related antipatterns already exists (Duvall, 2011), our goal is to infer
bad practices from pieces of evidence, i.e., SO posts or semi-structured
interviews.

– RQ2: How relevant are the identified CI bad smells for developers working
in CI? While in the previous research question we derive a catalog of
CI bad smells by interviewing experts and analyzing SO discussions, it
could be possible that different bad smells might have a different degree
of perceived importance. By surveying developers, this research question
aims at assessing the importance of the bad smells identified in RQ1, and,
therefore, at performing an external validation of the compiled catalog.

– RQ3: How our pieces of evidence confirm/contradict/complement the exist-
ing CI pattern/antipattern catalog by Duvall (2011)? This research question
aims at comparing our catalog of CI bad smells with those from literature.
This is done by performing a mapping between our catalog and the one
by Duvall (2011). It is important to remark that it is not our goal to deter-
mine which catalog is better. Instead, we want to determine the extent to
which the antipatterns defined by Duvall (2011) are reflected by problems
occurring in real practice, and whether there are problems not considered
by Duvall (2011).



8 Fiorella Zampetti et al.

Inception

Interviews Stack-Overflow 
Mining

Sentence 
Identification

Catalog 
Creation (RQ1)

Survey (RQ2) Duvall 
Mapping (RQ3)

Saturation 
Assessment

D
efi

ni
tio

n
Va

lid
at
io
n

Card sorting

(3 iterations by


3 coders)

Fig. 1 Process for CI Bad Smell Catalog Creation and Validation.

Table 1 Summary of the study data.

Interviews
Interviewed Experts 13
Companies 6
Sentences 102

SO mining
Queries 192
Retrieved Posts 4,645
Manual analysis 2,322
Posts found to be relevant 533

3.2 Study Methodology

Fig. 1 shows the overall methodology we followed to create and validate our
catalog of CI bad smells. The methodology comprises a set of steps to create
the catalog and further steps to validate it. Also, the figure reports which steps
produce results for our study research questions. Table 1, instead, provides
essential information about data processed/collected during our interviews
and SO mining.

3.2.1 Inception

As first step, we performed an inception phase to enrich our knowledge on the
possible CI misuses and therefore be able to effectively conduct interviews and
mine online discussions. To this aim, we relied on well-known books, together
with the related online resources: the Duvall et al. book on CI (Duvall et al.,



An Empirical Characterization of Bad Practices in Continuous Integration 9

2007) and the book by Humble and Farley (2010). We intentionally did not use
Duvall’s catalog (Duvall, 2011) in this phase, because we wanted to proceed
bottom-up from the problems experienced by developers adopting CI. This
allows us to perform an unbiased comparison of our catalog with the one by
Duvall in a subsequent phase of the study.

In addition, we looked at previous research articles in the area: surveys
about CI conducted in industrial context (St̊ahl and Bosch, 2014b,a), as well
as studies focusing on specific CI phases (Beller et al., 2017; Manuel Gerardo
Orellana Cordero and Demeyer, 2017; Zampetti et al., 2017).

3.2.2 Semi-Structured Interviews

The goal of the semi-structured interviews was to understand and discuss with
practitioners the problems they encountered when maintaining and using the
whole CI pipeline in practice. We conducted interviews instead of a survey
because (i) we expected that problems varied a lot depending on the context,
and therefore it might have been worthwhile to deepen the discussion on spe-
cific CI areas; and (ii) interviews allowed us to discuss and capture specific
situations the practitioners experienced doing CI activities. To conduct the
interviews, we created an interview guide composed of the following sections:
– Logistics: consent and privacy/anonymization notices.
– Demographics: we asked the participant the: study degree, years of expe-

rience, programming languages used, role in the CI process, and company
size/domain.

– Characteristics of the CI pipeline adopted: when CI was introduced, the
number of projects adopting it, the typical pipeline structure and adoption
of practices such as the use of branches and nightly builds.

– CI bad practices encountered: to guide the interview, we asked the main
reasons inducing a restructuring of the CI process and also, when and how
such maintenance activities have been performed. Finally, we asked the
participants to tell us what are the typical issues they have experienced
using the CI pipeline, in terms of symptoms and consequences.

The interviewed companies were identified based on the personal list of con-
tacts of the authors. Thus, the interviewees were either our direct contacts, or
we were forwarded to people specifically working on the CI pipeline. As shown
at the top of Table 1, we identified in total 13 people from six different com-
panies (in four cases we interviewed multiple people from the same company,
working on rather different projects). The interviews were conducted either in
person or using a video-conferencing system (Skype). In both cases, the audio
of the interview was recorded. Each interview lasted between 30-45 minutes
on average, depending on the participants’ availability.

All the participants have more than eight years of experience in software
development; all of them use Java; eight are also very familiar with JavaScript,
and five are knowledgeable of Python. Table 2 summarizes the domain/size
(number of employees) of each company, while Table 3 reports, for each inter-
viewee, her role in the CI pipeline and also from when her company started



10 Fiorella Zampetti et al.

Table 2 Companies involved in the interviews.

Company Domain Size
#1 Software for Public Admin. 30
#2 IT consultant 100
#3 IT consultant for Financial Services 800
#4 Software for PA 9,000
#5 Telco 50,000
#6 IT consultant 100,000

Table 3 Interviewed experts.

Comp. ID Role
CI Intro
(years)

#1 #1 Pipeline Configuration 2
#2 Pipeline Configuration 4

#2 #3 Pipeline Configuration —
#3 #4 Pipeline Configuration —

#5 DevOps 2
#6 Design solution for Jenkins 2
#7 Pipeline Configuration —
#8 DevOps —

#4 #9 Pipeline Configuration 5
#10 Pipeline Configuration 5

#5 #11 Pipeline Configuration & DevOps 5
#6 #12 Pipeline Configuration & DevOps 3

#13 Pipeline Configuration & DevOps > 5

to adopt the CI process. As shown in Table 2, the involved companies vary in
terms of size and domain. More importantly, as shown in Table 3, the majority
of our respondents declared to be actually in charge of configuring/maintaining
the whole CI pipeline, while only two respondents are simply using the pipeline
as is. Finally, each company started to use CI two or more years ago (“–” in-
dicates that the respondent did not precisely know when). As an outcome, we
obtained a set of transcribed sentences from the taped interviews, referring to
possible CI bad practices to use in the subsequent phase to create the catalog.
The sentences report either the current practice, (e.g., “Our client dictates the
quality gates. We have only to meet these gates”), a perceived bad practice
(e.g., “Hardcoded configurations are a CI smell”) or, in some cases, both (e.g.,
“Monitor the global technical debt ratio, without paying attention to a single
developer activity. It’s up to developers to decide when performing refactor-
ing”). The complete set of collected sentences is available in our replication
package (Zampetti et al., 2019).

3.2.3 Analysis of Stack Overflow Posts

As a first step, we needed to identify SO tags to use for retrieving candidate
SO posts that could be relevant to our study. By scrutinizing the whole set
of SO tags available2, we identified four CI-related tags, namely continuous-

2 We have queried the SO database in May 2017



An Empirical Characterization of Bad Practices in Continuous Integration 11

integration, jenkins, hudson, and travis-ci, used to better contextualize the
discussions (i.e., issues/problems identification) to CI, since in some cases you
could face the same problem in a different development practice. Then, we
identified a total of 48 tags (a complete list is available in our online ap-
pendix (Zampetti et al., 2019)) that could relate to the specific activities
and properties we were interested to investigate, such as Version Control
Systems - VCS (e.g.,branching-strategy, version-control), build (e.g.,batch-file,
build-process), testing (e.g.,acceptance-testing, automated-tests), performance
(e.g.,build-time) and other related tags. In the end, we performed SO queries
expecting at least one of the four CI-related tags, and one of the 48 specific
tags (192 queries).

As a result, we downloaded 4,645 candidate, non-duplicated posts. We ran-
domly divided such posts into two sets (ensuring proportions for each query),
the first half used for inferring the catalog of CI bad smells, and the second
half used for verifying the catalog saturation, as detailed in Section 3.2.6.

Each selected post, belonging to the first half (in total 2,322 posts), was
fully read by a tagger (one of the authors) to establish its relevance. The
relevance was expressed tagging each post as “Yes”, “Maybe”, or “No”. In the
presence of a potentially relevant post, the tagger had to report the relevant
text extracted from it in a spreadsheet. Otherwise, the tagger wrote, if needed,
a short justification for the lack of relevance (i.e., “No” tag). Tagging was
performed based on the full content of the post, not just the title.

While it was unpractical (due to the size of the dataset) to afford multiple
taggers per post, to minimize false positives, all the “Yes” or “Maybe” were
independently re-analyzed by a different tagger. Posts with a “No” were dis-
carded after an evaluator different from the tagger skimmed the annotation
related to the lack of relevance. While a full analysis of posts tagged with one
“No” could have reduced the number of false negatives, we preferred to reduce
false positives instead, while keeping the number of posts to analyze reason-
able enough. Out of the 2,322 manually-analyzed posts, 635 were labeled as
“Yes” or “Maybe” by at least one tagger, with an agreement of 86.3%. While
we promoted to “Yes” all posts on which the two taggers were in agreement
(“Yes/Yes” or “Yes/Maybe”), we had to resolve, by means of a discussion
(involving a further author that did not participate in the initial tagging), all
the “Maybe/No” cases (128). Of such cases, only 26 were promoted to “Yes”.
This resulted in a total of 533 posts to be used in the subsequent phases to
create the catalog.

3.2.4 Identification of sentences reflecting symptoms of CI bad practices

Two authors (hereinafter referred to as “coders”) analyzed the 533 SO posts
identified in the previous phase, as well as the sentences transcribed from
the interviews referring to possible symptoms of CI bad practices. The two
coders used a shared spreadsheet to group sentences and to encode the specific
problem/symptom instance using a short sentence. Upon adding the short
sentence, each coder could either select — through a drop-down menu — one



12 Fiorella Zampetti et al.

of the previously defined short descriptions, or add a new one. In other words,
when performing the encoding, each coder could browse the already created
short descriptions. If no description suited the specific case, the coder added
a new short description in the list of possible ones, making it available for
the upcoming annotations. As an example, the coders used the sentence “Test
too long in the commit stage” to highlight the usage of a build process that
does not adhere to the fast feedback practice Duvall (2011) or “Manual steps
while triggering different stages in the pipeline” to point out the lack of full
automation of a CI process.

As a result, the coders defined a total of 162 initial symptoms reflecting
possible CI misuses, from the SO posts. The interviews’ transcripts contained
a total of 102 sentences related to CI bad practices. The encoding of such
sentences resulted in the identification of a total of 62 symptoms of CI misuses.
Of such cases, 20 were not previously found in the SO posts. This ended up
in a set of 182 initial symptoms reflecting CI bad practices.

3.2.5 Elicitation of the Catalog of CI bad smells

To address RQ1, and therefore provide a systematic classification of bad smells
faced by developers when applying CI, we performed card-sorting (Spencer,
2009) starting from the symptoms identified in the previous phase. We relied
on an online shared spreadsheet to perform the task.

The task was iteratively performed by three of the authors following three
steps:

1. We discarded bad smells related to problems in the development process
that do not have a direct impact on CI. For instance, we excluded generic
test smells (van Deursen et al., 2001) or code smells (Fowler et al., 1999a).

2. We discarded symptoms reflecting possible CI misuses that we recognized
to be “bugs”. As an example, we found some SO discussions in which
developers discussed build failures due to the presence of bugs in third-
party libraries included in the project. While the inclusion has a negative
impact on the build process, this does not represent a CI misuse.

3. We merged related bad smells. For example, in some circumstances, a very
similar bad practice was mentioned in two different CI activities, e.g., ar-
bitrarily skipping a failing static analysis check or a failing test case.

The process was iterated three times, until no further changes were applied
to the catalog. In the end, the final version of the catalog, discussed in details in
Section 4.1 (RQ1), features a total of 79 bad smells grouped into 7 categories.

3.2.6 Catalog Validation on Unseen Stack Overflow Posts

To verify the catalog saturation, i.e., its capability to cover bad smells not
encountered in our manual analysis, we took the remaining set of 4,645-
2,322=2,323 SO posts and extracted a statistically significant sample of 330
posts. Such a sample size was chosen to ensure a significance level of 95%



An Empirical Characterization of Bad Practices in Continuous Integration 13

and a margin of error of ±5%. Also, the 330 posts were sampled in propor-
tion across the query tags. In other words, a stratified-random sampling was
performed, where strata are represented by the set of posts returned by the
different queries (i.e., tags). After that, two independent evaluators (two of
the authors) selected the relevant posts and mapped them onto the 79 CI bad
smells. Where the evaluators could not find a bad smell in the catalog match-
ing the SO post, they added an annotation in the spreadsheet to be able to
discuss these cases (8 cases in total). After the first round of independent clas-
sification, we found that the evaluators agreed in 76% of the cases on whether
a post was related to CI bad smells or not. While this percentage seems high, it
is still possible that they could have agreed by chance. Therefore, we computed
the Cohen’s k (Cohen, 1960), which resulted to be 0.46 (moderate). After that,
a third author identified the inconsistent classifications and discussed with the
evaluators the reasons why this occurred, e.g., somebody classified as relevant
SO posts that were seeking technical information (howto) about given pieces of
technology. Such posts were not questioning an appropriate adoption practice,
but, instead, seeking technical details, e.g., installation or usage instructions.
After that, the two evaluators reworked again on the inconsistent cases. After
the re-coding, the Cohen’s k increased to 0.79 (substantial agreement), and
the agreement rate to 91%. Also, we computed the agreement rate in terms of
the kind of smell each evaluator associated to the post. In this case, we used
the Krippendorff’s α reliability coefficient (Krippendorff, 1980) as the labeling
was incomplete (i.e., for a post an evaluator could have indicated a bad smell,
and another none). We obtained a reliability coefficient α = 0.67, which is
considered an acceptable agreement.

In the end, 131 out of 330 posts were classified as related to CI bad smells
by at least one of the evaluators, out of which only 1 was not included in the
previous version of the catalog. More specifically, one SO post pointed out
cases where the build fails as soon as the first test case fails. This implies
having a great number of build failures without having a clear vision about
the whole changes being implemented and pushed.

In summary, the results of the validation indicate that, with some excep-
tions, the identified catalog is general enough. However, this does not exclude
that, in the future, further bad smells could emerge and be therefore included
in the catalog.

3.2.7 Evaluating the Catalog through a Survey

To address RQ2, we conducted a survey involving practitioners adopting CI in
their organization. To ensure a good generalizability of the validation and to
encourage participation, we adopted the snowball (Goodman, 1961) sampling.
That is, we shared the survey link to some contact points, and encouraged
them to indicate us further participants, or people in the company better
suited to participate in the survey. We followed this strategy because, while we
had personal knowledge with a relatively limited set of contacts, snowballing



14 Fiorella Zampetti et al.

helped to reach the relevant people (i.e., those involved in CI) and, in general,
to favor participation. The online survey presented to the participants had:
1. An introduction explaining the meaning of our CI bad smells, as well as

some basic terminology definitions for avoiding misunderstandings;
2. A demographic section similar to the one described in Section 3.2.2.
3. A set of 7 sections in which bad smells belonging to each category are

evaluated.
We asked each respondent to evaluate the relevance of each bad smell

over a 5-level Likert scale (Oppenheim, 1992) (strongly agree, weakly agree,
borderline, weakly disagree, strongly disagree), and we also gave the option
to answer “Don’t know”. At the end of each section, we had an optional free
comment field where the respondent could provide additional insights. The
questionnaire has been administered through Survey Hero3. The link has been
sent to the people using an invitation email, in which we encouraged to spread
the links to other CI experts. We kept the questionnaire open for four weeks.
Nobody reported to have particular issues (e.g., privacy issues) with the used
survey administration tool.

After closing the survey, we obtained 26 responses from developers work-
ing in 21 different companies. Among all respondents, 15 were generic de-
velopers, while others covered different roles including project managers (3),
solution/software architects (3), and researchers (5). All of them were involved
in the CI process as maintainers and/or used the CI pipeline.

In the company/units where the respondents work, CI was introduced less
than 5 years ago (7 cases), between 5-10 years (8 cases), and more than 10
years ago (12 cases). Note that this varied even within the same company
for different units/projects. Most of them used Jenkins as CI automation in-
frastructure (17 cases), or GitLab (9 cases), while others used various kinds of
infrastructures including Concourse, Bitbucket, or even in-house solutions. The
build automation was performed mostly with Gradle (14 responses), Maven
(10) and Ant (4)4, but also with various other tools such as cmake or npm.

3.2.8 Mapping onto Duvall’s Antipatterns

To address RQ3, we analyzed the overlap of our set of bad smells with those
proposed by Duvall (2011) to (i) investigate the exhaustiveness of our catalog;
(ii) determine whether the empirically derived set of bad smells are not covered
in Duvall’s catalog, pointing out also more specialized cases of CI bad smells
and/or outlining trade-offs. Note that we consider the last version of Duvall’s
catalog (Duvall, 2011) and, in Section 4.3, we explain why some antipatterns
are out of the scope of this study.

The analysis was conducted by two authors independently (each author
tried to create a mapping between Duvall’s catalog and ours). When per-
forming the mapping, we considered the possibility of assigning one Duvall’s

3 https://www.surveyhero.com
4 The sum is > 26 as multiple build automation tools may be used.



An Empirical Characterization of Bad Practices in Continuous Integration 15

antipattern to multiple CI bad smells in our catalog or vice versa. In other
words, the mapping is not one-to-one.

After the first round of annotation, the two authors agreed in the mapping
with a Krippendorff α=0.65, which is just below the minimum acceptability
of α=0.66 defined in the literature (Krippendorff, 1980). Similarly to what
was done in the previous case (validation), a third author analyzed the dis-
agreement cases and discussed them with the two annotators. As an example
of inconsistent annotations, for the “Repository” pattern in Duvall’s cata-
log (Duvall, 2011) the first annotator used the “Pipeline related resources are
not versioned” while the second one mapped it onto the “Missing Artifact’s
Repository” bad smell. With the help of a different author, and looking at the
whole description of the pattern (and related antipattern) in Duvall’s catalog,
the annotators converged on the fact that the antipattern is clearly highlight-
ing the needs for having all the resources required to execute the build process
under version control to avoid unnecessarily build failures. After that, the two
annotators performed the mapping of the inconsistent cases again. The new
mapping yielded an agreement rate of 80% and a Krippendorff α=0.84.

4 Empirical Study Results

Table 4-Table 10 provide an overview of the 79 CI bad smells emerged from
our empirical investigation. As explained in Section 3.2.5, we grouped them
into 7 categories related to different dimensions of a CI pipeline management.

The third column (D) of the tables reports whether or not the bad smell
maps onto at least one Duvall’s antipattern (Duvall, 2011) (RQ3, Section 4.3).
The fourth and fifth column report results related to the perception of CI bad
smells (RQ2, Section 4.2) and, specifically, the number of respondents that
evaluated that specific bad smell (Resp.), and the evaluation results in form
of asymmetric stacked bar charts. Note that each bar chart also reports three
percentages: (i) respondents providing a disagree/strongly disagree answer,
(ii) respondents providing a neutral answer, and (iii) respondents providing
an agree/strongly agree answer.

4.1 Overview of the CI Bad Smell Catalog

In the following, we provide a general overview of the 7 categories of CI bad
smells, without necessarily enumerating and describing all bad smells belong-
ing to each category. For more detailed information, the complete catalog is
available in our online appendix (Zampetti et al., 2019).

Repository groups bad smells concerning a poor repository organization,
and misuse of version control system (VCS) in the context of CI (see Table 4).
Some smells (R1–R3) deal with problems related to the repository structure
which may affect the modularity of CI solutions (e.g., to build different mod-
ules of a software project separately). Moreover, a poor project decomposition



16 Fiorella Zampetti et al.

Table 4 Results of Bad Smells’ Perception - Repository (mapping with Duvall antipatterns
(D), # of respondents that evaluated the smell (Resp), and the asymmetric stacked bar chart
with 3 percentages: strongly disagree/disagree answer, neutral answer, and agree/strongly
agree answer).

ID CI Bad Smell D Resp. Survey Results

R1 Project decomposition in the
repository does not follow
modularization principles

7 26 30% 39%30%Q1

R2 Test cases are not organized in
folders based on their purposes

7 26 48% 22%30%Q2

R3 Local and remote workspace
are not aligned

7 25 30% 57%13%Q3

R4 Number of branches
do not fit the project
needs/characteristics

3 26 41% 27%32%Q4

R5 A stable release branch is miss-
ing

7 25 45% 45%9%Q5

R6 Feature branches are used in-
stead of feature toggles

3 24 30% 45%25%Q6

R7 Divergent Branches 3 26 38% 48%14%Q7

R8 Generated artifacts are ver-
sioned, while they should not

3 25 50% 18%32%Q8

R9 Blobs are unnecessarily
checked-in at every build
instead of being cached

7 25 41% 23%36%Q9

R10 Pipeline related resources are
not versioned

3 25 18% 64%18%Q10

BP41
100 50 0 50 100

Strongly disagree Weakly disagree Borderline Weakly agree Strongly agree

into sub-modules (R1) might make parallel work on branches more difficult,
but also prevent from having (some) faster builds limited to certain modules
only. Then, there are bad smells about branch misuses (R4–R7), e.g., wrong
choice between the use of feature branches and feature toggles (R6) or the use
of an unbalanced number of branches that do not fit the project’s characteris-
tics (R4). Finally, some smells concern the poor choice of configuration items
(R8–R10).

Infrastructure Choices groups bad smells related to a sub-optimal choice
of hardware or software components while setting a CI pipeline (see Table 5).
Hardware issues are mainly related to a poor allocation of the CI process across
hardware nodes that could overload development machines or lose scalability
(I1, I2). Software-related bad smells (I4–I7) concern poor tool choices and
configuration, e.g., use of inadequate plugins for certain tasks (I6), abuse of
ad-hoc shell scripts (I7), as well as the use of external plugins with default
configurations not suitable to the specific development scenario (I3). Indeed,
each tool has to be configured according to the (i) developers’ needs, (ii) final
product requirements, and (iii) policies adopted by the organization.

Build Process Organization. This category, the one with the largest
number of bad smells (29), features CI bad smells related to a poor configura-
tion of the whole CI pipeline, as detailed in Table 6. Some of such bad smells
are related to the CI environment’s initialization. Specifically, inappropriate



An Empirical Characterization of Bad Practices in Continuous Integration 17

Table 5 Results of Bad Smells’ Perception - Infrastructure Choices (mapping with Duvall
antipatterns (D), # of respondents that evaluated the smell (Resp), and the asymmetric
stacked bar chart with 3 percentages: strongly disagree/disagree answer, neutral answer,
and agree/strongly agree answer).

ID CI Bad Smell D Resp. Survey Results

I1 Resources related to the same
pipeline stage are distributed
over several servers

7 22 64% 14%23%Q11

I2 The CI server hardware is used
for different purposes other
than running the CI framework

7 25 48% 24%28%Q12

I3 External tools are used with
their default configurations

7 25 28% 28%44%Q13

I4 Different releases of
tools/plugins versions are
installed on the same server

7 25 40% 48%12%Q14

I5 Different plugins are used to
perform the same task in the
same build process

7 25 48% 28%24%Q15

I6 A task is implemented using an
unsuitable tool/plugin

3 25 40% 32%28%Q16

I7 Use shell scripts for a task for
which there is a suitable plugin
available

7 25 44% 20%36%Q17

clean-up strategies (BP1) could have been chosen. This, on the one hand (ag-
gressive clean-up), may unnecessarily slow-down the build, and, on the other
hand (lack of clean-up where needed), would make the build less effective to
reveal problems.

There are two CI bad smells dealing with cases in which either monolithic
builds are used where they should not (BP4), and where there is a poor de-
composition of build jobs (BP3), e.g., including several activities in one single
job or duplicating the same activities in multiple different jobs.

From a different perspective, looking at the build execution, our catalog
includes CI bad smells related to the lack of parallelization while executing
independent build jobs/tasks (BP5), the skip of certain phases/tasks just to
make a previously failing build passing (BP8), or the use of an unsuitable
ordering of build phases/tasks (BP7), e.g., a phase failing often such as static
analysis checks follows a long and expensive test phase, making the latter
worthless when the build fails.

Another key issue in configuring builds is related to the triggering strategy
that may lead to some bad smells (BP10–BP15), e.g., related to builds started
manually, or to the abuse of nightly builds, useful in certain circumstances, e.g.,
to run computationally-expensive tasks, but otherwise defeating the purposes
of CI.

An inappropriate setting of the build outcome, e.g., succeeding a build
when a task is failed (BP16), is also considered a bad smell. The same ap-
plies when the outcome of a build depends on some flakiness in the execution
(BP17). Although flakiness has been extensively studied in some specific con-
text, e.g., for testing (Bell et al., 2018; Luo et al., 2014; Palomba and Zaid-
man, 2017; Thorve et al., 2018), we focus on the extent to which different



18 Fiorella Zampetti et al.

Table 6 Results of Bad Smells’ Perception - Build Process Organization (mapping with Du-
vall antipatterns (D), # of respondents that evaluated the smell (Resp), and the asymmetric
stacked bar chart with 3 percentages: strongly disagree/disagree answer, neutral answer, and
agree/strongly agree answer).

ID CI Bad Smell D Resp. Survey Results

BP1 Inappropriate build environ-
ment clean-up strategy

3 25 28% 40%32%Q18

BP2 Missing Package Management 7 24 25% 58%17%Q19

BP3 Wide and inchoesive build jobs
are used

3 25 44% 40%16%Q20

BP4 Monolithic builds are used in
the pipeline

7 25 28% 56%16%Q21

BP5 Independent build jobs are not
executed in parallel

3 25 48% 36%16%Q22

BP6 Only the last commit is built,
aborting obsolete and queued
builds

3 25 44% 24%32%Q23

BP7 Build steps are not properly or-
dered

7 25 40% 48%12%Q24

BP8 Pipeline steps/stages are
skipped arbitrarily

7 24 46% 46%8%Q25

BP9 Tasks are not properly dis-
tributed among different build
stages

3 23 48% 35%17%Q26

BP10 Incremental builds are used
while never building the whole
project from scratch

7 25 36% 36%28%Q27

BP11 Poor build triggering strategy 3 24 33% 50%17%Q28

BP12 Private builds are not used 7 22 32% 36%32%Q29

BP13 Some pipeline’s tasks are
started manually

3 25 44% 44%12%Q30

BP14 Use of nightly builds 3 25 36% 48%16%Q31

BP15 Inactive projects are being
polled

7 23 52% 17%30%Q32

BP16 A build is succeeded when a
task is failed or an error is
thrown

3 25 28% 64%8%Q33

BP17 A build fails because of some
flakiness in the execution,
whereas it should not

7 24 12% 67%21%Q34

BP18 Dependency management is
not used

3 25 40% 44%16%Q35

BP19 Including unneeded dependen-
cies

7 25 36% 44%20%Q36

BP20 Some tasks are executed with-
out clearly reporting their re-
sults in the build output

7 25 24% 56%20%Q37

BP21 The output of different build
tasks are mixed in the build
output

7 23 17% 48%35%Q38

BP22 Failures notifications are only
sent to teams/developers that
explicitly subscribed

3 25 44% 40%16%Q39

BP23 Missing notification mecha-
nism

3 25 28% 56%16%Q40

BP24 Build reports contain verbose,
irrelevant information

7 25 24% 56%20%Q41

BP25 Time-out is not properly con-
figured

7 25 36% 52%12%Q42

BP26 Unneeded tasks are scheduled
in the build process

7 25 28% 44%28%Q43

BP27 Build time for the com-
mit stage overcomes the
10-minutes rule

3 23 22% 52%26%Q44

BP28 Unnecessary re-build steps are
performed

7 25 20% 40%40%Q45

BP29 Authentication data is hard-
coded (in clear) under VCS

3 25 32% 52%16%Q46



An Empirical Characterization of Bad Practices in Continuous Integration 19

kinds of flakiness (related to testing, but also to the temporary unavailability
of some online resources) affect the build outcome on a CI server. Further-
more, the build output needs to be properly configured (BP20–BP24). Here
the bad smells are related to inadequate observability and low readability of
logs/notifications.

Inadequate/wrong dependency management is also felt like a very impor-
tant problem (BP18, BP19). Previous studies reported how the majority of
build failures is due to these kinds of problems (Kerzazi et al., 2014; Seo et al.,
2014; Vassallo et al., 2017).

There are some bad smells dealing with those cases in which the builds
result to be particularly long such as the presence of unnecessary tasks (BP26),
or unnecessary rebuilds (BP28).

Finally, although we did not focus on security-related issues, as there is a
specific work by Rahman et al. (2019), we got interview responses as well as
SO discussions related to the presence of security-sensitive data (e.g., authen-
tication information) hard-coded in the VCS (BP29).

Table 7 Results of Bad Smells’ Perception - Build Maintainability (mapping with Duvall
antipatterns (D), # of respondents that evaluated the smell (Resp), and the asymmetric
stacked bar chart with 3 percentages: strongly disagree/disagree answer, neutral answer,
and agree/strongly agree answer).

ID CI Bad Smell D Resp. Survey Results

BM1 Absolute/machine-dependent
paths are used

7 26 31% 65%4%Q47

BM2 Build scripts are highly depen-
dent upon the IDE

3 26 27% 58%15%Q48

BM3 Environment variables are not
used at all

3 26 35% 31%35%Q49

BM4 Build configurations are cloned
in different environments

3 24 50% 29%21%Q50

BM5 Build jobs are not
parametrized

7 25 36% 36%28%Q51

BM6 Lengthy build scripts 7 25 40% 28%32%Q52

BM7 Missing smoke test, set of tests
to verify the testability of the
build

3 25 24% 44%32%Q53

BM8 Missing/Poor strict naming
convention for build jobs

7 26 15% 46%38%Q54

Build Maintainability. Since build configuration files often change over
time and their changes induce more relative churn than source code changes
(McIntosh et al., 2011), their maintainability is also an important concern. As
reported in Table 7, problems can arise when a build configuration is coupled
with a specific workspace (see BM1–BM3, e.g., environment variables are not
used when they should), or when the build script is poorly commented, uses
meaningless variable names, and modularity is not used when it should be.
While a recent work by Gallaba and McIntosh (2018) deals with specific
problems related to the maintainability of Travis-CI .travis.yml files, our



20 Fiorella Zampetti et al.

bad smells are technology-independent and cover problems that can occur in
all scripts involved in a build pipeline.

Table 8 Results of Bad Smells’ Perception - Quality Assurance (mapping with Duvall
antipatterns (D), # of respondents that evaluated the smell (Resp), and the asymmetric
stacked bar chart with 3 percentages: strongly disagree/disagree answer, neutral answer,
and agree/strongly agree answer).

ID CI Bad Smell D Resp. Survey Results

Q1 Lack of testing in a production-
like environment

3 25 8% 75%17%Q55

Q2 Code coverage tools are run
only while performing testing
different from unit and integra-
tion

7 23 30% 35%35%Q56

Q3 Coverage thresholds are fixed
on what reached in previous
builds

3 23 35% 30%35%Q57

Q4 Coverage thresholds are too
high

3 24 46% 25%29%Q58

Q5 Missing tests on feature
branches

7 26 31% 50%19%Q59

Q6 All permutations of feature
toggles are tested

7 19 32% 37%32%Q60

Q7 Production resources are used
for testing purposes

3 25 36% 52%12%Q61

Q8 Testing is not fully automated
leading to a non-reproducible
build

3 26 27% 65%8%Q62

Q9 Test suite contains flaky tests 7 26 19% 69%12%Q63

Q10 Bad choice on the subset of test
cases to run on the CI server

7 25 28% 40%32%Q64

Q11 Failed tests are re-executed in
the same build

7 25 52% 20%28%Q65

Q12 Quality gates are defined
without developers considering
only what dictated by the
customer

7 24 29% 42%29%Q66

Q13 Use quality gates in order to
monitor the activity of specific
developers

7 25 36% 52%12%Q67

Q14 Unnecessary static analysis
checks are included in the
build process

7 26 38% 42%19%Q68

Quality Assurance. This category relates to CI bad smells that are link-
able to testing and static analysis phases (see Table 8). Bad smells related
to testing are due to the lack of optimization for testing tasks within a CI
pipeline5: for example a branch is not tested before merging it (Q5), or all
permutations of features toggles are tested (Q6) and, as a consequence, the
build gets slow or fails without a reason.

Moreover, this category features smells related to how test coverage thresh-
olds (resulting in build failures, when not reached) are set (Q3, Q4), or the lack

5 This is beyond test suite optimization, which is an important problem in testing, but
out of scope for this investigation.



An Empirical Characterization of Bad Practices in Continuous Integration 21

of a clear separation between test suites related to different testing activities
(Q10) (Manuel Gerardo Orellana Cordero and Demeyer, 2017; Vassallo et al.,
2017). Our catalog also includes problems related to (i) the use of production
resources during testing operations (Q7), (ii) the test suite not being fully
automated provoking a non-reproducible build (Q8), and (iii) the presence of
flaky tests that may unnecessarily fail the build (Q9). Note that we have ex-
cluded from our analysis the presence of test smells (van Deursen et al., 2001),
since they can negatively impact the understandability and maintainability of
the product under development independently from the use of CI.

Bad smells related to static analysis are mostly due to how tools are config-
ured and used within a CI pipeline. More in detail, they include failing to select
appropriate checks given the project characteristics (Q14), or setting quality
gates not representative of what is relevant for developers and/or customers
(Q12).

Table 9 Results of Bad Smells’ Perception - Delivery Process (mapping with Duvall an-
tipatterns (D), # of respondents that evaluated the smell (Resp), and the asymmetric
stacked bar chart with 3 percentages: strongly disagree/disagree answer, neutral answer,
and agree/strongly agree answer).

ID CI Bad Smell D Resp. Survey Results

D1 Artifacts locally generated are
deployed

7 26 35% 58%8%Q69

D2 Missing Artifacts’ repository 3 26 35% 46%19%Q70

D3 Missing rollback strategy 3 26 15% 62%23%Q71

D4 Release tag strategy is missing 7 26 27% 50%23%Q72

D5 Missing check for deliverables 7 24 25% 62%12%Q73

Delivery Process. This category of bad smells concerns the storage of
artifacts related to a project release. As reported in Table 9, they are related
to poor/lack of usage of artifact repositories giving the possibility of rollback
of deployed artifacts (D2, D3), or to the adoption of bad deployment strategies
(D1), e.g., deployment of locally-generated artifacts.

Furthermore, this category includes bad smells related to software release
in the production environment. These are related to not using a strategy aimed
to validate the produced deliverables/artifacts taking part in a release (D5),
or missing a clear and well-defined tagging convention for artifacts related to
specific releases (D4).

Culture. We found bad smells whose symptoms might not be inferred by
observing the CI pipeline, but are more human-related (see Table 10). They
deal with the lack of a shared culture on how developers should behave when
adopting CI. These include (i) bad push/pull practices (C1, C2), e.g., pushing
changes before a previous build failure is being fixed; (ii) poor prioritization
of CI-related activities (C5, C6), including the fixing of build failures, and (iii)
Dev/Ops separation (C3, C4), i.e., developers and operators roles are kept
separate, which is against the DevOps practice and, among other negative



22 Fiorella Zampetti et al.

Table 10 Results of Bad Smells’ Perception - Culture (mapping with Duvall antipatterns
(D), # of respondents that evaluated the smell (Resp), and the asymmetric stacked bar chart
with 3 percentages: strongly disagree/disagree answer, neutral answer, and agree/strongly
agree answer).

ID CI Bad Smell D Resp. Survey Results

C1 Changes are pulled before fix-
ing a previous build failure

7 23 30% 43%26%Q74

C2 Team meeting/discussion is
performed just before pushing
on the master branch

7 22 32% 36%32%Q75

C3 Developers and Operators are
kept as separate roles

3 25 24% 44%32%Q76

C4 Developers do not have a com-
plete control of the environ-
ment

3 26 19% 46%35%Q77

C5 Build failures are not fixed
immediately giving priority to
other changes

3 26 12% 58%31%Q78

C6 Issue notifications are ignored 3 25 16% 64%20%Q79

effects, increases the burden when fixing build failures affecting different stages
of a CI pipeline.

4.2 Perceived Importance of CI Bad Smells

In the following, we describe examples of CI bad smells perceived as very
relevant, or, on the contrary, not particularly relevant by the respondents to
our survey. As previously explained, a summary of the perceived relevance
is depicted as asymmetric stacked bar charts on the right-side of Table 4-
Table 10.

Overall, our results indicate that:

1. 26 bad smells received a strongly agree/agree assessment by over 50% of
the respondents (i.e., the third percentage in the asymmetric stacked bar
charts is greater than 50%). Such bad smells are listed in Table 11.

2. 26 bad smells had more strongly agree/agree (but ≤ 50%) than strongly
disagree/disagree assessments.

3. 14 bad smells had more strongly disagree/disagree (but ≤ 50%) than
strongly agree/agree assessments.

4. 7 bad smells received a strongly disagree/disagree assessment by over 50%
of the respondents (i.e., the first percentage in the asymmetric stacked bar
charts is greater than 50%). Such bad smells are listed in Table 12.

5. 5 bad smells received an equal number of agreement and disagreement
assessments.

Note that the above grouping merely serves to facilitate the discussion of
relevant/less relevant bad smells, and that, depending on the use one wants to
make of the catalog, it could be possible to group (or even rank) bad smells
differently.



An Empirical Characterization of Bad Practices in Continuous Integration 23

Table 11 Bad smells considered relevant by the majority of respondents.

Category Smell

Repository
Local and remote workspace are misaligned (R3)
A stable release branch is missing (R5)
Pipeline related resources are not versioned (R10)

Build Process Organization

Missing package management (BP2)
Monolithic builds are used in the pipeline (BP4)
Build steps are not properly ordered (BP7)
A build is succeeded when a task is failed or an error is thrown
(BP16)
A build fails because of some flakiness in the execution,
whereas it should not (BP17)
Some tasks are executed without clearly reporting their results
in the build output (BP20)
Missing a build notification mechanism (BP23)
Build reports contain verbose, irrelevant information (BP24)
Time-out is not properly configured (BP25)
Build time for the “commit stage” overcomes the 10-minutes
rule (BP27)
Authentication data is hardcoded (in clear) under VCS
(BP29)

Build Maintainability
Absolute/machine-dependent paths are used (BM1)
Build scripts are highly dependent upon the IDE (BM2)

Quality Assurance

Lack of testing in a production-like environment (Q1)
Production resources are used for testing purposes (Q7)
Testing is not fully automated leading to a non-reproducible
build (Q8)
Test suite contains flaky tests (Q9)
Use quality gates in order to monitor the activity of specific
developers (Q13)

Delivery Process
Artifacts locally generated are deployed (D1)
Missing rollback strategy (D3)

Culture
Build failures are not fixed immediately giving priority to
other changes (C5)
Issue notifications are ignored (C6)

Table 12 Bad smells considered as not relevant by the majority of respondents.

Category Smell

Infrastructure Choices
Resources related to the same pipeline stage are distributed
over several servers (I1)
Different plugins are used to perform the same task in the
same build process (I5)

Build Process Organization

Independent build jobs are not executed in parallel (BP5)
Only the last commit is built, aborting obsolete and queued
builds (BP6)
Tasks are not properly distributed among different build
stages (BP9)
Inactive projects are being polled (BP15)

Quality Assurance Failed tests are re-executed in the same build (Q11)



24 Fiorella Zampetti et al.

As regards the Repository organization (see Table 4), out of 10 CI bad
smells, 3 were considered relevant by the majority of respondents, and other 3
received more positive than negative assessments. Respondents found particu-
larly relevant the lack of alignment between the local (developers’) workspace
and the CI server workspace (R3), but also the lack of a stable release branch
(R5). This was also remarked by one of our interviewees: “Production builds
have to be “shiny”, the development ones can be “cloudy”. The last build in
production must not be a failed build.”. If there is a stable release branch, the
development team always has a software product ready to be released.

Moreover, the survey respondents felt the need for versioning all pipeline-
related resources (e.g., configuration files, build scripts, test data) as highly
relevant (R10). At the same time, our respondents gave relatively negative
importance to CI bad smells going into the opposite direction, i.e., those dis-
couraging the versioning of binary large objects (R9) for performance reasons),
or of previously generated artifacts (R8). While the lack of versioning for all
needed resources makes impossible the execution of the build process, the pres-
ence of previously-generated artifacts could make the build unreproducible,
and it could lead to a release of a software product that does not reflect the
last changes being applied.

Most of the bad smells belonging to the Infrastructure Choices, see
Table 5, received more negative than positive assessments. While the original
book on CI by Duvall et al. (2007) stressed this aspect, nowadays the avail-
ability of adequate hardware to support a CI server is generally not an issue,
unless one has to deal with very specific contexts, such as cyber-physical sys-
tems for which the pipeline requires to be connected with hardware-in-the-loop
or simulators. We would have expected positive feedback about bad smells re-
lated to software infrastructure choices, but this was not usually the case. In
particular, the distribution of resources related to the same pipeline stage over
multiple servers (I1) was not considered a problem, likely because, at least
for some pipeline stages (i.e., the ones different from the commit stage), the
overhead due to the download of required resources from different servers may
still be acceptable. Only one bad smell received more positive than negative
assessments. Such a bad smell is related to the use of multiple plugin versions
(I4), possibly causing conflicts or inconsistencies. One SO post, while identify-
ing the root cause of a build failure, remarked that “When there are multiple
version of [a tool] installed side by side in Build Server, ensure right version
of [the tool] is used by Build Server to execute the unit test”. Truly, an incon-
sistency may not necessarily result in a build failure, but may produce slightly
different outputs that might confuse developers or even fail external tools con-
suming such outputs. The usage of default configurations in build scripts (I3)
received an equal proportion of positive and negative assessments. While pre-
vious research has highly motivated the need for properly configuring tools
used in the build (e.g., static analysis tools, see the work of Zampetti et al.
(2017)), it was also found that developers rarely pay attention to that (Beller
et al., 2016; Zampetti et al., 2017).



An Empirical Characterization of Bad Practices in Continuous Integration 25

As expected, we received positive feedback by the majority of respondents
for several (11 out of 29) bad smells belonging to the Build Process Or-
ganization, i.e., on how all steps of a build are configured through build
automation scripts, as detailed in Table 6. In this context, a relevant bad
smell is the lack of a proper package management mechanism (BP2) in the
build automation. Specifically, if the CI pipeline does not include a package
manager, developers might wrongly assume the presence of resources no longer
available or use an outdated version of them. Furthermore, it becomes diffi-
cult to manage tools included in the pipeline, in terms of installing, upgrading,
configuring, and removing them. By using a package manager it is possible to
specify when checking for updates, thus avoiding to download all dependencies
at each build. The CI bad smell discussed above originates from an interviewee
who clearly stated that: “Sometimes we don’t clean the dependencies (that are
not useful anymore) in our project. As a result, we have huge packages that
are time-consuming to deploy”.

Another relevant bad smell in this category is the lack of decomposition of
builds into cohesive jobs, resulting in a monolithic build (BP4). This bad smell
produces several side effects, including the difficulty in (i) identifying the cause
for a build failure, (ii) parallelizing multiple jobs, and (iii) maintaining the
overall build process. A slightly different problem that is considered relevant
by our respondents is the one dealing with having a sub-optimal ordering of
tasks (BP7) in a build process. In other words, some build steps should be
always performed before others, e.g., integration testing should be scheduled
before deployment in the production environment in order to discover faults
earlier.

The way the build output is reported is also particularly important. First
of all, respondents believe that ignoring the outcome of a task when determin-
ing the build status (BP16) defeats the primary purpose of CI. These kinds
of smells may occur when, for example, static analysis tools produce high-
severity warnings without failing a build. While a previous study found that
this practice is indeed adopted for tools that may produce a high number of
false positives (Wedyan et al., 2009), one SO post remarked that “. . . if the
build fails when a potential bug is introduced, the amount of time required to fix
it is reduced.”, and a different user in the same discussion highlighted that “If
you want to use static analysis do it right, fix the problem when it occurs, don’t
let an error propagate further into the system.”. A related bad smell judged as
relevant is the lack of an explicit notification of the build outcome (BP23) to
developers through emails or other channels. In other words, having the build
status only reported in the CI dashboard is not particularly effective, because
developers might not realize that a build has failed.

Furthermore, it can be troublesome if tools do not (clearly) report results in
the build logs (BP20, BP21) since their output might be difficult or impossible
to access when the tool is executed on a CI server. At the same time, a very
verbose build log (BP24) containing unnecessary details (this depends on how
different tools/plugins are configured) would make the build result difficult to
browse and understand. Quite surprisingly, even if an interviewee remarked



26 Fiorella Zampetti et al.

that “To skip tests is always an antipattern ”, our survey results report the
same proportion of agreement and disagreement on this bad smell (BP8). This
is a surprising result since it is difficult to imagine some circumstances in which
hiding the presence of issues/problems in the build is a good practice.

Concerning Build Maintainability, out of eight bad smells, two received
a positive assessment by the majority of respondents and other two received
more positive than negative responses (see Table 7). The two most positively-
assessed bad smells were related to the usage of absolute paths in the build
(BM1), and the coupling between the build and the IDE (BM2). The high
perceived relevance of such smells is justified considering that their presence
will unavoidably limit the portability of the build resulting in statements such
as “but it works on my machine”. The need for performing smoke-testing
(BM7) was also considered relatively important, as well as the usage of suitable
naming conventions inside the build scripts (BM8).

While there were no bad smells for which the majority of respondents pro-
vided a negative assessment, quite surprisingly, the lack of usage of environ-
ment variables (BM3), the cloning of build scripts (BM4), and the presence of
lengthy build scripts (BM6) received more negative than positive assessments.
As regards the build configurations being cloned in different environments, our
interviews and the mined SO posts highlighted that developers should make
use of parametrized build jobs and environment variables to enable reuse of
build jobs. However, this bad smell (BM4) may be very project-dependent. In-
deed, it may be crucial in presence of critical projects where developers need
to deploy and test in different environments in which they need to slightly
change the build configuration based on the target environment, and define a
different chain of build jobs for each environment.

About Quality Assurance, out of 14 bad smells, five received a posi-
tive assessment by the majority of respondents, and six more positive than
negative assessments (see Table 8). Respondents considered as relevant the
lack of testing in a production-like environment (Q1), while at the same time
they considered dangerous the use of production resources for testing purposes
(Q7). The latter has been also highly discussed in SO. Indeed, in a SO post, a
user searching “. . . for the CI server to be useful, my thoughts are that it needs
to be run in production mode with as close-as-possible a mirror of the actual
production environment (without touching the production DB, obviously).”. By
analyzing the provided answers on SO, we found that “Testing environment
should be (configured) as close as it gets to the Production.” concluding the
discussion by highlighting that “The best solution is to mimic the production
environment as much as possible but not on the same physical hardware.”.

Concerning testing automation, the need for a fully-automated testing pro-
cess (Q8) was considered important, because manual tests would be excluded
from automated build within CI. Furthermore, flaky tests (Q9) were consid-
ered particularly problematic in the context of CI, indeed we found many SO
discussions in which developers struggled improving the overall build relia-
bility while having randomly failing tests. As an example, a SO question in
which a user asked “ I’d like to know if there is a way to . . . warn of failing



An Empirical Characterization of Bad Practices in Continuous Integration 27

tests only if the same tests fail in the previous builds. This, albeit not a perfect
solution, would help mitigate the randomness of tests and the effort to analyse
only those that are real bugs.”. The above findings help us in explaining why
the majority of respondents considered irrelevant the re-execution of failed
tests within the same build (Q11).

Concerning the usage of static analysis, the majority of respondents con-
sidered a problem the use of CI (and static analysis tools) to monitor specific
developers (Q13) since, as also highlighted in our interviews, this kind of mon-
itoring only negatively impacts the overall developers’ productivity and their
ability to work in a team. Moreover, one interviewee also highlighted that
“Monitor the global technical debt ratio, without paying attention to single de-
veloper activity. It’s up to developers to decide when to perform refactoring”.
As regards the definition of quality gates only based on customers’ guidelines
(Q12), we got more positive than negative judgments. Indeed, customers could
not have enough knowledge about the software development process and the
implemented source code. This might result in an excessive number of build
failures, due to some quality checks suggested by developers (Johnson et al.,
2013) (e.g., on a too low cyclomatic-complexity threshold or too high test-
coverage threshold) or, on the contrary, might result in the omission of some
relevant checks that only developers might consider, e.g., because they know
details about the source code.

In general, we received particularly positive feedback for the bad smells
related to the categories Delivery Process and Culture. All bad smells
belonging to the Delivery Process category obtained a positive assessment
either by the majority of respondents or, at least, they received more positive
than negative assessments (see Table 9). The most relevant bad smells were
related to the deployment of artifacts generated locally (D1) (i.e., on the
developers’ machine rather than on the CI infrastructure), to the absence of
an artifact repository where to deploy released products (D2), and to the lack
of a rollback mechanism (D3).

About the Culture category, the majority of respondents considered rel-
evant bad smells related to not trying to fix a build failure immediately (C5),
and ignoring CI notifications (C6), see Table 10. Other bad smells related to
how work is organized received more positive than negative feedback. They
concern (i) pulling from the repository when a build has failed (C1), (ii) orga-
nizing a meeting just before pushing to the master (C2), (iii) keeping separate
the developer and operator roles (C3), and (iv) developers that do not have
complete control of the CI environment (C4). This indicates how the lack of a
shared view on how developers (and teams) should behave when adopting CI
would diminish the advantages introduced by putting in place a suitable (and
in some cases complex) CI infrastructure.



28 Fiorella Zampetti et al.

4.3 Mapping and Comparison with Duvall’s Antipatterns

Table 13 reports the mapping between Duvall’s patterns and our CI bad smells.
Note that we use the pattern name, because Duvall, under each pattern, re-
ports a brief description of the good practice (pattern) and the corresponding
bad practice (antipattern). For brevity, in Table 13 and in the remainder of
this section, we refer pattern/antipattern using the pattern’s name, however,
we discuss the comparison considering Duvall’s antipatterns and our CI bad
smells. Where necessary, we also report the corresponding antipattern in our
text. The last column summarizes the perception of the CI bad smell (detailed
values are in Tables 4-10) corresponding to each Duvall’s pattern. In particu-
lar, we use (i) ↑↑ to indicate bad smells that received a positive assessment by
the majority of respondents; (ii) ↑ for bad smells that received more positive
than negative feedback (but ≤ 50% of positive answers); (iii) − for bad smells
that received an equal proportion of positive and negative feedback; (iv) ↓ for
bad smells that received more negative than positive feedback (but ≤ 50% of
negative answers); and (v) ↓↓ to indicate bad smells that received a negative
assessment by the majority of respondents.

The mapping is not one-to-one. For example, on the one side, the “Pipeline
related resources (e.g., configuration files, build script, test data) are not ver-
sioned” (R10) in our catalog covers 3 different patterns from Duvall’s catalog,
namely “Repository“ (where the antipattern mentions “some files are checked
in others, such as environment configuration or data changes, are not. Bina-
ries — that can be recreated through the build and deployment process — are
checked in”), “Single Path to Production” (the antipattern mentions “parts
of system are not versioned”) and “Scripted Database” (the antipattern men-
tions “manually applying schema and data changes to the database.”). All
these antipatterns highlight the presence of resources needed for the CI pro-
cess that are not versioned. On the other side, the “Build Threshold” pattern
in Duvall’s catalog (the antipattern mentions “learning of code quality issues
later in the development cycle.”) matches 3 different bad smells in our cat-
alog, namely “Coverage thresholds are too high” (Q4), “Coverage thresholds
are fixed on what reached in previous builds” (Q3), and “A build is succeeded
when a task is failed or an error is thrown” (BP16).

Our catalog, composed of 79 bad smells, covers 39 out of 50 Duvall’s an-
tipatterns, while 11 of them are left uncovered. Going more in-depth into
antipatterns uncovered by our CI catalog, we found two cases, namely “Con-
figuration Catalog” (the antipattern says “configuration options are not doc-
umented”) and “Commit Often” (the antipattern says: “source files are com-
mitted less frequently than daily . . . ”). Such antipatterns are mainly related
to versioning system’s usage not directly specific to the CI context. Moreover,
there are other 4 Duvall’s antipatterns mainly related to planning activities,
which are out of the scope of CI, and therefore were not covered in our inter-
views nor in the analyzed SO posts. These are:

1. “Canary Release”, where the antipattern occurs when “software is released
to all users at once”;



An Empirical Characterization of Bad Practices in Continuous Integration 29

Table 13 Mapping between Duvall’s patterns (and their antipatterns) and CI smells.

Duvall Pattern CI Bad Smell Rel.
Configurable Third-Party
Sw.

A task is implemented using an unsuitable tool/plugin (I6) ↓

Configuration Catalog 7
Mainline Number of branches do not fit the project needs/characteristics (R4) ↓
Merge Daily Divergent branches (R7) ↑
Protected Configuration Authentication data is hardcoded under VCS (BP29) ↑ ↑
Repository Pipeline related resources are not versioned (R10) ↑ ↑
Repository Generated artifacts are versioned, while they should not (R8) ↓
Short-Lived Branches Divergent branches (R7) ↑
Single Command Environ-
ment

Some pipeline’s tasks are started manually (BP13) –

Single Path to Production Pipeline related resources are not versioned (R10) ↑ ↑
Build Threshold A build is succeeded when a task is failed or an error is thrown (BP16) ↑ ↑
Build Threshold Coverage thresholds are too high (Q4) ↓
Build Threshold Coverage thresholds are fixed on what reached in previous builds (Q3) ↓
Commit Often 7
Continuous Feedback Missing notification mechanism (BP23) ↑ ↑
Continuous Feedback Failures notif. only sent to teams that explicitly subscribed (BP22) ↓
Continuous Feedback Issue notifications are ignored (C6) ↑ ↑
Continuous Integration Use of nightly builds (BP14) ↑
Continuous Integration Poor build triggering strategy (BP11) ↑
Continuous Integration Only the last commit is built, aborting absolete and queued builds

(BP6)
↓ ↓

Stop The Line Build failures are not fixed immediately giving priority to other
changes (C5)

↑ ↑

Independent Build Build scripts are highly dependent upon the IDE (BM2) ↑ ↑
Visible Dashboards Failures notif. only sent to teams that explicitly subscribed (BP22) ↓
Automate Tests Testing is not fully automated (Q8) ↑ ↑
Isolate Test Data Production resources are used for testing purposes (Q7) ↑ ↑
Parallel Tests Independent build jobs are not executed in parallel (BP5) ↓ ↓
Stub Systems Production resources are used for testing purposes (Q7) ↑ ↑
Deployment Pipeline Some pipelines’ tasks are started manually (BP13) –
Value-Stream Map 7
Dependency Management Dependency management is not used (BP18) ↑
Common Language 7
Externalize Configuration Environment variables are not used at all (BM3) ↓
Externalize Configuration Build configurations are cloned in different environments (BM4) ↓
Externalize Configuration Authentication data is hardcoded (in clear) under VCS (BP29) ↑ ↑
Fail Fast Wide and incohesive jobs are used (BP3) ↓
Fast Builds Build time for the “commit stage” overcomes the 10-minutes rule

(BP27)
↑ ↑

Fast Builds Tasks are not properly distributed among different build stages (BP9) ↓ ↓
Scripted Deployment Some pipelines’ tasks are started manually (BP13) –
Unified Deployment Build configurations are cloned in different environments (BM4) ↓
Binary Integrity Missing artifacts repository (D2) ↑
Canary Release 7
Blue-Green Deployments 7
Dark Launching 7
Rollback Release Missing rollback strategy (D3) ↑ ↑
Self-Service Deployment Developers and operators are kept as separate roles (C3) ↑
Automate Provisioning Developers do not have a complete control of the environment (C4) ↑
Behavior-Driven Monitor-
ing

Missing smoke test, set of tests to verify the testability of the build
(BM7)

↑

Immune Systems 7
Lockdown Environments Developers do not have a complete control of the environment (C4) ↑
Production-Like Environ-
ments

Lack of testing in a production-like environment (Q1) ↑ ↑

Transient Environments 7
Database Sandbox Lack of testing in a production-like environment (Q1) ↑ ↑
Database Sandbox Inappropriate build environment clean-up strategy (BP1) ↑
Decouple Database 7
Database Upgrade Some pipelines’ tasks are started manually (BP13) –
Scripted Database Pipeline related resources are not versioned (R10) ↑ ↑
Branch by Abstraction Number of branches do not fit the project needs/characteristics (R4) ↓
Toogle Features Feature branches are used instead of feature toggles (R6) ↑
Delivery Retrospective Developers and operators are kept as separate roles (C3) ↑
Cross-Functional Teams Developers and operators are kept as separate roles (C3) ↑
Root-Cause Analysis 7



30 Fiorella Zampetti et al.

2. “Dark Launching”, where the antipattern occurs when “software is de-
ployed regardless of the number of active users”;

3. “Value-Stream Map”, where the antipattern relates to “separately defined
processes and views of the check in to release process”;

4. “Common Language”, where the antipattern occurs when “each team uses
a different language making it difficult for anyone to modify the delivery
system”.

Also, our CI catalog does not cover specific Duvall patterns mainly related
to deployment and delivery activities, namely:

1. “Blue-Green Deployments”, highlighting the need for deploying software
to a non-production environment while production continues to run;

2. “Immune System”, that emphasizes the need for deploying software one
instance at a time while conducting Behavior-Driven Monitoring, and

3. “Decouple Database”, aimed at ensuring that the application is backward
and forward compatible with the database giving the possibility of inde-
pendent deployment activities.

Finally, our catalog does not cover the (i) “Transient Environments”, where
the antipattern occurs when environments are fixed or pre-determined, and (ii)
“Root-Cause Analysis”, where the antipattern occurs when developers “accept
the symptom as the root cause of the problem.”

From a different perspective, looking at the second column in Table 4-
Table 10, only 35 of our CI bad smells are covered by Duvall, while 44 are
completely uncovered. More specifically, our catalog includes specific CI bad
smells related to (i) the way the CI infrastructure is chosen and organized, as
well as (ii) how a build process is organized and configured, and (iii) testing
and quality checks.

Focusing on the testing phase (and therefore on bad smells we catego-
rized under Quality Assurance), it is possible to state that, even if Duvall’s
catalog has a category aimed to cover problems occurred in doing testing ac-
tivities consisting of four patterns/antipatterns fully covered by our catalog,
we provide other six further bad smells not contemplated by Duvall’s catalog.
Specifically, two of them — “Missing tests on feature branches” (Q5) and “All
permutations of feature toggles are tested” (Q6) — focus on the way a testing
strategy is adopted in the CI pipeline. Their consequence is a negative impact
on the build duration, also preventing the availability of fast feedback.

Other two CI bad smells not covered by Duvall, namely “Bad choice on
the subset of test cases to run on the CI server” (Q10) and “Failed tests are
re-executed in the same build” (Q11), deal with the way in which test cases
are executed in the CI pipeline.

Looking at the second column in Table 8, we can notice that three CI bad
smells related to the definition/usage of quality gates are not mapped onto
Duvall’s catalog, and, at the same time, are highly relevant for our survey par-
ticipants. More in detail, the “Quality gates are defined without developers
considering only what dictated by the customer” (Q12) highlights that devel-
opers need to be involved in the definition of the quality gates, since customers



An Empirical Characterization of Bad Practices in Continuous Integration 31

do not have enough knowledge of software development and implementation
details. The “Use quality gates in order to monitor the activity of specific de-
velopers without using them for measuring the overall software quality” (Q13),
instead, emphasizes the fact that the overall team spirit will be negatively im-
pacted in presence of monitoring activities. Finally, the “Unnecessary static
analysis checks are included in the build process” (Q14) may unnecessarily
slow down the build duration as well as may decrease the developers’ produc-
tivity, since developers will waste their time trying to fix violated checks that
do not completely fit the need of their organization.

In the following, we discuss some examples of CI bad smells (partially)
contradicting common wisdom and/or outlining trade-off situations for devel-
opers.

Nightly builds are a particular type of scheduled builds that are usually per-
formed overnight (i.e., out of working hours). Duvall reports their usage as an
antipattern corresponding to the “Continuous Integration” pattern (“Sched-
uled builds, nightly builds, building periodically, building exclusively on de-
velopers machines, not building at all.”). Indeed, Duvall highlights as good
practice the need for building and testing software with every change commit-
ted to a project VCS (Duvall, 2011).

In our catalog, the CI bad smell “The project only uses nightly builds
when having multiple builds per day is feasible” (BP14) is relevant for 48%
of our respondents. Differently from Duvall, we do not consider nightly builds
as something to avoid; instead, we foresee caution in using them. On the one
side, to follow the “Fast Builds” rule it is important to execute time-consuming
tasks over the night and not during the regular builds. On the other side, if
developers schedule the whole set of tasks during regular builds, the usage of
nightly builds could be redundant. The above bad smell is discussed in many
SO posts related to the build duration. More in detail, a SO discussion stated:
“. . . on each commit, I would like to run a smaller test suite, and then nightly
it should run a full regression test suite . . . which is much more involved and
can run for hours . . . ”

Having an adequate branching strategy is another key point in the CI pro-
cess. Our catalog provides four different CI bad smells dealing with the adop-
tion of a poor branch management strategy in the CI process. Among them,
the “Feature branches are used instead of feature toggles” (R6) and “Number
of branches do not fit the project needs/characteristics” (R4) identify situa-
tions in which the right decision depends upon the organization needs. More
specifically, the bad smell (R6) discourages the use of branches when develop-
ing features, and it is in agreement with what stated by Duvall. However, a
recent study by Rahman et al. (2016) found that feature toggles, despite their
advantages, could introduce technical debt involving maintenance effort for
developers. To this regard, we found quite controversial opinions in SO posts.
For example, in one SO post, the preferred choice is the feature toggles even if
“. . . requires very strict discipline as broke/dark code is making it to produc-
tion”. The discussion ends with the following suggestion: “I do not believe in
a better choice in all the cases”.



32 Fiorella Zampetti et al.

Furthermore, the “Number of branches do not fit the project needs/cha-
racteristics” (R4) bad smell, mapped onto Duvall’s antipattern “Multiple bran-
ches per project” (related to the “Mainline” pattern), occurs when a project
has several branches that might not be needed. While Duvall indicates as an
antipattern the “Feature Branching”, our CI bad smell suggests the usage of
a proper number of branches according to a well-defined strategy. An inter-
viewee of our study agrees with the usage of different branches evolving in
parallel (“We use a branch for each service and usually 3/4 developers work
on it. There is a straight separation between each branch.”), while some SO
discussions discourage to exceed in the number of branches: “You must have
your changes included in the main trunk so you can reduce the number of
conflicts related to merge operations.”

Since 39 patterns/antipatterns defined by Duvall are covered by 35 CI bad
smells of our catalog, it is interesting to look at their perceived relevance ac-
cording to our survey respondents. More specifically, we discuss some cases
considered highly relevant as well as some cases considered as less relevant.
On the one side, unsurprisingly, the “Protected Configuration” pattern (the
antipattern mentions “open text passwords and/or single machine or share.”)
mapped onto our “Authentication data is hardcoded (in clear) under VCS”
bad smell (BP29), is considered still relevant by our survey participants since
it is mainly related to security issues. Also for “Single Path to Production”
pattern defined by Duvall, mapped onto our “Pipeline related resources are
not versioned” bad smell (R10), the relevance is high since that this bad smell
negatively impacts the reproducibility of the overall build process. On the
other side, the “Parallel Tests” pattern is felt as less relevant by our survey
respondents. Developers, at least for builds that are not executed in the com-
mit stage, do not account for the build duration. Indeed, the main goal of
parallelizing independent tasks is to reduce the overall build time.

Finally, Duvall considers as an antipattern the execution of dependent build
jobs/tests in parallel. This bad smell has been found in many SO discussions,
however, as already detailed in Section 3.2, we discarded it because we consider
this to be a bug rather than a bad smell.

5 Threats to Validity

Threats to construct validity relate to the relationship between theory and ex-
perimentation. These are mainly due to imprecision in our measurements. We
relied on SO tags to filter SO discussions. While it is possible that we could
have missed some relevant posts because their tags were not directly related
to CI, we at least made sure to pick all tags of interest by performing a man-
ual, exhaustive analysis of all SO tags. Concerning the protocol used for the
semi-structured interviews, it is possible that the incompleteness of our inter-
view structure could have lead to some CI bad smells. However, to mitigate
this threat, the questions being asked in the last part of our interview took
into account what we learned from the existing literature (Duvall et al., 2007;



An Empirical Characterization of Bad Practices in Continuous Integration 33

Duvall, 2011; Humble and Farley, 2010). Concerning the way we collected bad
practices relevance through the survey, we used a 5-level Likert scale (Oppen-
heim, 1992) to collect the perceived relevance of each CI practice. To limit
random answers, we added a “Don’t know” option and the opportunity to
explain the answers with a free comment field.

Threats to internal validity are related to confounding factors, internal to
the study, that can affect our results. Internal validity threats can, in particu-
lar, affect the extent to which the protocol followed to build the catalog could
have influenced our results. As detailed in Section 3.2, we used different coun-
termeasures to limit the influence of our subjectiveness. As for the analysis
of SO posts, it was not possible to afford two independent taggers per post.
However, the independent re-check on the “Yes”/“’Maybe” limited the false
positives, though could not mitigate possible false negatives. The mapping onto
Duvall’s antipatterns and the validation of the catalog were performed by two
independent evaluators, inter-rater agreement was computed, assignment con-
flicts were resolved through a discussion, and inconsistent cases were re-coded
again to improve the inter-rater agreement. For what concerns the creation
of the catalog itself, we interleaved multiple iterations done by discussions of
comments each author raised during each iteration.

Threats to conclusion validity concern the relationship between theory and
outcome, and are mainly related to the extent to which the produced catalog
can be considered exhaustive enough to capture CI bad practices. While we
are aware that there might be CI bad smells we did not consider, to mitigate
the threat and verify saturation, we validated a statistically significant sample
of SO posts not used when building the catalog.

Threats to external validity concern the generalizability of our findings.
These are mainly due to (i) the choice of SO as a source for mining CI-related
discussions, and (ii) the set of interviewed people. Concerning SO, it is the
most widely used development discussion forum to date. Although specific
forums for CI exist (e.g., DZone6), such forums are more portals where white
papers (e.g., the one with Duvall’s antipatterns (Duvall, 2011)) are posted
rather than a Question & Answer (Q&A) forum. The number of participants
(and companies) to the interviews and survey is admittedly, limited. At the
same time, the companies are pretty diverse in terms of domain and size,
and the interviewed/surveyed people always had several years of experience.
Nevertheless, we could still have missed some relevant problems, e.g., we have
shown (Section 4.3) that eight of Duvall’s antipatterns did not emerge from
our study.

6 Implications

This section discusses the implications of the identified CI bad smells for prac-
titioners, researchers, and educators.

6 https://dzone.com



34 Fiorella Zampetti et al.

6.1 Implications for Practitioners

In the following, we discuss implications for practitioners, which could either
be developers just using the CI pipeline, but also developers having the re-
sponsibility and rights to configure it.

In this context, the aim of the catalog is providing developers with con-
crete misuses of the CI pipeline. These misuses can occur at different stages,
including: (i) setting up and configuring the Software Configuration Manage-
ment (SCM) infrastructure, as well as the CI infrastructure and tooling, and
(ii) performing daily activities in the context of a CI pipeline, which translates
into creating and synchronizing/merging branches, pushing changes, interpret-
ing and leveraging results of the CI builds to improve software quality.

In the following, we report some scenarios where the catalog of CI bad
smells could help developers.

Favor specific, portable tools over hacking. One of the CI bad smells
we identified is related to a sub-optimal selection of tools composing the CI
pipeline. Specifically, the adoption of a tool that does not provide the features
needed by developers may cause delays or, even worse, force the adoption of
“hacking solutions”, e.g., custom shell scripts. While such scripts can represent
a quick-and-dirty solution for the immediate, in the long term they can exhibit
maintainability issues, or even introduce portability problems on different ma-
chines. This CI bad smell was pointed out by one of our interviewees, saying
that they “replaced the old scripts with Jenkins”. Our catalog includes the bad
smell “Use shell scripts for a task for which there is a suitable plugin available”
(I7) that covers these aspects. Moreover, developers should pay attention to
avoid different versions of tools conflicting with each other, as indicated by
the bad smell “Different releases of tools/plugins versions are installed on the
same server” (I4).

Do not use out-of-the-box tools, nor listen customers only. Even
when suitable tools are chosen, such tools have to be properly configured.
One of our bad smells is “External tools are used with their default configu-
rations” (I3). Moreover, in this context, a relevant and frequent bad habit is
to not involve developers in the definition of the quality gates, but just listen
to customers’ requirements. Indeed, as reported by an interviewee, the “client
dictates the quality gates . . . [they] have only to meet these gates.” even though
they do not have enough expertise or knowledge about the software develop-
ment skills. For those reasons, our catalog features the bad smell “Quality
gates are defined without developers, considering only what dictated by the
customers” (Q12) that reminds how quality gates that have been established
without developers could increase the number of irrelevant warnings and slow
down the entire CI process.

Do not ignore nor hide build failures. When working with the CI
pipeline, it is possible that developers do not give adequate priority and im-
portance to warnings outputted in build logs, or even worse, to broken builds.
As a consequence, they tend to hide actual problems by just disabling fail-
ing tests or quality checks instead of solving them. In other cases, developers



An Empirical Characterization of Bad Practices in Continuous Integration 35

might improperly use the features provided by the whole environment or by
specific toolkits. A concrete example is reported in a SO post7 in which a user
highlighted that there are cases in which developers focus more on “. . . keep
the build passing as opposed to ensuring we have high quality software.”. The
latter translates into “. . . comment[ing] out the tests to make the build pass.”
resulting in having a passed build while the overall software quality is going
down.

Our catalog features the bad smell “Pipeline steps/stages are skipped ar-
bitrarily” (BP8), pointing out that it is important to not skip pipeline tasks
only to have a passed build. Also, the Culture category features bad smells
occurring when “Build failures are not fixed immediately giving priority to
other changes” (C5), or “Issue notifications are ignored” (C6).

6.2 Implications for Researchers

Development of automated CI bad smell detectors. Researchers can
use the catalog as a starting point to develop (semi) automated recommender
systems able to identify CI bad smells by mining or monitoring VCS data,
CI build logs, configuration files, and other artifacts. A CI bad-smell detec-
tor could, for example, identify poor choices in build or configuration files by
analyzing the build scripts’ complexity, length, and readability, or the pres-
ence of hard-coded configuration parameters. Then, the detector can highlight
the bad smells, and possibly, provide suggestions for refactoring them/making
them easier to read.

Also, a CI bad-smell recommender could go beyond that, and “observe”
the activity carried out by developers through the pipeline, including branch-
ing strategies, push/pull frequency, distribution of build failures, fix time etc..
As an example, the CI bad smell “Pipeline steps/stages are skipped arbitrar-
ily” (BP8) could be detected by analyzing the build history of the project,
and detecting cases where a build that failed because of test cases becomes
successful again without changes to the production code but, instead, because
test cases were commented out or disabled. One relevant example of CI bad-
smell detector is the CI-Odor tool by Vassallo et al. (2019a), which copes with
four antipatterns from Duvall’s catalog.

Support for failure analysis. A key element for quick fixing a build is
the capability of developers to properly analyze the output of a build. Our CI
bad smells provide indications of what should be avoided when configuring the
build log (e.g., “Build reports contain verbose, irrelevant information” (BP24)
or “The output of different build tasks are mixed in the build output” (BP21)),
or other notification mechanisms (e.g., “Failures notifications are only sent to
teams/developers that explicitly subscribed” (BP22)). Also, techniques sim-
ilar to those used to summarize release notes (Moreno et al., 2017) or bug
reports (Rastkar et al., 2014) could be used to extract and summarize relevant

7 https://stackoverflow.com/questions/214695/



36 Fiorella Zampetti et al.

information from verbose and complex build logs (as done by Vassallo et al.
(2019b)).

Keep the context into account. When building tools to identify CI
bad smells, researchers should take into account the developers’ context and,
if possible, their feedback to past recommendations to properly tune the rec-
ommender and avoid overloading developers with irrelevant suggestions. This
could be achieved by collecting a set of preferences about the CI practices
adopted in one organization (e.g., when to open a branch, push/pull prac-
tices, testing, and static analysis needs), by also observing the past history
of developers’ activity. For example, self-admitted technical debt (Potdar and
Shihab, 2014) can be used to learn bad smells relevant to developers, and
consequently help to configure static analysis tools properly.

Expand the catalog. Finally, having provided a methodology to infer
bad smells and a full study replication package, the catalog can be extended
through further bad smells other researchers might discover, and replication
studies on bad-smell relevance can confirm or contradict the results of our
survey.

6.3 Implications for Educators

Teach CI by providing examples of what not to do. The proposed
catalog can be valuable for educators introducing CI/CD principles in software
engineering curricula. A typical course about CI would introduce the topic,
illustrate the main claimed advantages of CI, explain the technologies that
can be used, and, importantly, provide principles to properly set up and use
the CI pipeline. So far, such principles are typically being taught mainly based
on the content of known books (Duvall et al., 2007; Humble and Farley, 2010)
or by using catalogs/white-papers reflecting existing knowledge in this area
coming from the available literature.

With the proposed catalog, it would be possible to explain CI misuses,
which are based on specific experiences occurred to developers and discussed
in SO or our interviews. In other words, this could enable the introduction of CI
using a “learn by example” methodology, illustrating practices that should be
avoided. Also, when applying CI in their homeworks, students can be thought
to monitor the occurrence of CI bad smells, open issues to this regard, and
solve them whenever possible.

Teach CI culture, not just technology. Given the importance provided
by our survey respondents to the Culture-related bad smells, it should be
avoided to introduce technological content about CI without fostering the
right understanding of the metaphor and its related processes.

7 Conclusions and Future Work

The adoption of Continuous Integration and Delivery (CI/CD) as develop-
ment practice is increasing. Studies conducted in industrial organizations and



An Empirical Characterization of Bad Practices in Continuous Integration 37

open source projects highlight benefits of CI/CD, including increased devel-
oper productivity, software quality, and reliability (Chen, 2017; Hilton et al.,
2016; Vasilescu et al., 2015). Despite those advantages, the introduction of
CI/CD in well-defined development contexts is still challenging, as also high-
lighted in previous work (Duvall, 2011; Hilton et al., 2017; Olsson et al., 2012).

This paper empirically investigates, by analyzing over 2,300 SO discus-
sions and by interviewing 13 industry experts, on bad practices developers
encounter when adopting CI. As a result of the study, we compiled a catalog
of 79 CI bad smells organized into 7 categories. The catalog has been vali-
dated through a survey involving 26 professional developers, indicating their
perceived relevance of the 79 bad smells.

While a catalog of CI patterns and antipatterns exists (Duvall, 2011), this
is, to the best of our knowledge, the first catalog empirically derived from
concrete problems discussed in SO or highlighted by interviewed experts, and
following a replicable methodology.

As we have shown in Section 4.3, while in some cases our results confirm
what known from the existing literature, there are quite a few controversial
cases, such as the appropriate balancing in the usage of nightly builds or
feature branches. Moreover, while our catalog does not cover 11 of Duvall’s
antipatterns (though covering all categories), there are 44 of our CI bad smells
not covered by Duvall, and they especially pertain to the CI infrastructure,
the build configuration, as well as testing and quality checks. We also discuss
cases in which the two catalogs agree and disagree, also highlighting examples
of Duvall’s antipatterns not perceived as important by our survey participants.

The catalog resulting from our study has implications for different stake-
holders. Practitioners can use it to avoid/recognize the application of bad
practices degrading the overall build process. Also, the catalog could be of
benefit for educators introducing CI in software engineering curricula, and
researchers interested in conceiving CI bad smell detectors. Indeed, besides
enlarging the study to different contexts, our future work is in the direction
of building automated recommenders to detect and possibly remove CI bad
smells.

Interestingly, while some researchers previously investigated barriers to-
wards CI (Hilton et al., 2017) and CD (Olsson et al., 2012) adoption, the
inferred bad practices indicate that some of those issues still arise when the
CI process has been adopted. They include, for example, long in-the-loop feed-
back during development, or network configuration issues.

Future work should further analyze the observed bad smells through other
kinds of empirical studies, e.g., in-field studies conducted within companies.

Acknowledgements We would like to thank experts/developers involved in our interviews
and those who participated in our online survey. Vassallo, Panichella, and Gall also acknowl-
edge the Swiss National Science Foundation’s support for the project SURF-MobileAppsData
(SNF Project No. 200021-166275).



38 Fiorella Zampetti et al.

References

Abdalkareem R, Mujahid S, Shihab E, Rilling J (2019) Which commits can
be CI skipped? IEEE Transactions on Software Engineering pp 1–1

Amazon (2017) What is continuous delivery? URL
https://aws.amazon.com/devops/continuous-delivery/

Basili VR (1992) Software modeling and measurement: The
goal/question/metric paradigm. Tech. rep., College Park, MD, USA

Beck K (2000) Extreme programming explained: embrace change. Addison-
Wesley Professional

Bell J, Legunsen O, Hilton M, Eloussi L, Yung T, Marinov D (2018) Deflaker:
automatically detecting flaky tests. In: Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, pp 433–444

Beller M, Bholanath R, McIntosh S, Zaidman A (2016) Analyzing the state of
static analysis: A large-scale evaluation in open source software. In: IEEE
23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER)

Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build: An
explorative analysis of travis ci with github. In: Proceedings of the 14th
International Conference on Mining Software Repositories, IEEE Press

Booch G (1991) Object Oriented Design: With Applications. Benjamin Cum-
mings

Chen L (2017) Continuous delivery: Overcoming adoption challenges. Journal
of Systems and Software

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol
Meas

Deshpande A, Riehle D (2008) Continuous integration in open source software
development. Open source development, communities and quality

Duvall P, Matyas SM, Glover A (2007) Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley

Duvall PM (2010) Continuous integration. patterns and antipatterns. DZone
refcard #84 URL http://bit.ly/l8rfVS

Duvall PM (2011) Continuous delivery: Patterns and antipat-
terns in the software life cycle. DZone refcard #145 URL
https://dzone.com/refcardz/continuous-delivery-patterns

Fowler M, Beck K, Brant J (1999a) Refactoring: improving the design of ex-
isting code. Addison-Wesley

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999b) Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley Professional

Gallaba K, McIntosh S (2018) Use and misuse of continuous integra-
tion features: An empirical study of projects that (mis)use Travis CI.
IEEE Transactions on Software Engineering (to appear):1–1, DOI
10.1109/TSE.2018.2838131

Ghaleb TA, da Costa DA, Zou Y (2019) An empirical study of the long
duration of continuous integration builds. Empirical Software Engineering



An Empirical Characterization of Bad Practices in Continuous Integration 39

24(4):2102–2139
Goodman LA (1961) Snowball sampling. The annals of mathematical statistics
Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and

benefits of continuous integration in open-source projects. In: Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE)

Hilton M, Nelson N, Tunnell T, Marinov D, Dig D (2017) Trade-offs in contin-
uous integration: Assurance, security, and flexibility. In: Proceedings of the
25th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2017

Humble J, Farley D (2010) Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Pro-
fessional

Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why don’t software
developers use static analysis tools to find bugs? In: Software Engineering
(ICSE), 2013 35th International Conference on, IEEE

Kerzazi N, Khomh F, Adams B (2014) Why do automated builds break?
an empirical study. In: 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE

Krippendorff K (1980) Content analysis: An introduction to its methodology.
Sage

Luo Q, Hariri F, Eloussi L, Marinov D (2014) An empirical analysis of flaky
tests. In: Proceedings of the 22nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, (FSE-22), Hong Kong, China,
November 16 - 22, 2014, pp 643–653

Manuel Gerardo Orellana Cordero AM Gulsher Laghari, Demeyer S (2017)
On the differences between unit and integration testing in the travistorrent
dataset. In: Proceedings of the 14th working conference on mining software
repositories

McIntosh S, Adams B, Nguyen TH, Kamei Y, Hassan AE (2011) An empirical
study of build maintenance effort. In: Proceedings of the Int’l Conference
on Software Engineering (ICSE)

Moreno L, Bavota G, Di Penta M, Oliveto R, Marcus A, Canfora G (2017)
ARENA: an approach for the automated generation of release notes. IEEE
Trans Software Eng 43(2):106–127

Olsson HH, Alahyari H, Bosch J (2012) Climbing the ”stairway to heaven” –
a mulitiple-case study exploring barriers in the transition from agile devel-
opment towards continuous deployment of software. In: Proceedings of the
2012 38th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA ’12

Oppenheim B (1992) Questionnaire Design, Interviewing and Attitude Mea-
surement. Pinter Publishers

Palomba F, Zaidman A (2017) Does refactoring of test smells induce fixing
flaky tests? In: 2017 IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2017, Shanghai, China, September 17-22,
2017, pp 1–12



40 Fiorella Zampetti et al.

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical
debt. In: 30th IEEE International Conference on Software Maintenance and
Evolution

Rahman A, Parnin C, Williams L (2019) The seven sins: security smells in
infrastructure as code scripts. In: Proceedings of the 41st International Con-
ference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May
25-31, 2019, pp 164–175

Rahman MT, Querel LP, Rigby PC, Adams B (2016) Feature toggles: practi-
tioner practices and a case study. In: Mining Software Repositories (MSR),
2016 IEEE/ACM 13th Working Conference on, IEEE

Rastkar S, Murphy GC, Murray G (2014) Automatic summarization of bug
reports. IEEE Trans Software Eng 40(4):366–380

Savor T, Douglas M, Gentili M, Williams L, Beck K, Stumm M (2016) Con-
tinuous deployment at facebook and OANDA. In: Companion proceedings
of the 38th International Conference on Software Engineering (ICSE Com-
panion)

Seo H, Sadowski C, Elbaum SG, Aftandilian E, Bowdidge RW (2014) Pro-
grammers’ build errors: a case study (at Google). In: Proc. Int’l Conf on
Software Engineering (ICSE)

Spencer D (2009) Card sorting: Designing usable categories. Rosenfeld Media
St̊ahl D, Bosch J (2014a) Automated software integration flows in industry:

a multiple-case study. In: Companion Proceedings of the 36th International
Conference on Software Engineering, ACM

St̊ahl D, Bosch J (2014b) Modeling continuous integration practice differences
in industry software development. J Syst Softw

Thorve S, Sreshtha C, Meng N (2018) An empirical study of flaky tests in
android apps. In: 2018 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018,
pp 534–538

van Deursen A, Moonen L, Bergh A, Kok G (2001) Refactoring test code. In:
Proceedings of the 2nd International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP)

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and produc-
tivity outcomes relating to continuous integration in github. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ACM

Vassallo C, Zampetti F, Romano D, Beller M, Panichella A, Di Penta M,
Zaidman A (2016) Continuous delivery practices in a large financial orga-
nization. In: 32nd IEEE International Conference on Software Maintenance
and Evolution (ICSME)

Vassallo C, Schermann G, Zampetti F, Romano D, Leitner P, Zaidman A,
Di Penta M, Panichella S (2017) A tale of ci build failures: An open source
and a financial organization perspective. In: Software Maintenance and Evo-
lution (ICSME), 2017 IEEE International Conference on, IEEE

Vassallo C, Proksch S, Gall H, Di Penta M (2019a) Automated reporting of
anti-patterns and decay in continuous integration. In: Proceedings of the



An Empirical Characterization of Bad Practices in Continuous Integration 41

41st International Conference on Software Engineering, ICSE 2019, Mon-
treal, Canada, May 25 - 31, 2019, IEEE, p (to appear)

Vassallo C, Proksch S, Zemp T, Gall HC (2019b) Every build you break:
Developer-oriented assistance for build failure resolution. Empirical Software
Engineering (To appear)

Wedyan F, Alrmuny D, Bieman JM (2009) The effectiveness of automated
static analysis tools for fault detection and refactoring prediction. In: Second
International Conference on Software Testing Verification and Validation,
ICST 2009, Denver, Colorado, USA, April 1-4, 2009, pp 141–150

Zampetti F, Scalabrino S, Oliveto R, Canfora G, Di Penta M (2017) How
open source projects use static code analysis tools in continuous integration
pipelines. In: Proceedings of the 14th International Conference on Mining
Software Repositories, IEEE Press

Zampetti F, Vassallo C, Panichella S, Canfora G, Gall H, Di
Penta M (2019) An empirical characterization of bad prac-
tices in continuous delivery (online appendix). Tech. rep., URL
http://home.ing.unisannio.it/fiorella.zampetti/datasets/CIBadPractices.zip


