
A Study on the Interplay between Pull Request
Review and Continuous Integration Builds

Fiorella Zampetti
University of Sannio

Benevento, Italy

Gabriele Bavota
Università della Svizzera Italiana

Lugano, Switzerland

Gerardo Canfora
University of Sannio

Benevento, Italy

Massimiliano Di Penta
University of Sannio

Benevento, Italy

Abstract—Modern code review (MCR) is nowadays well-
adopted in industrial and open source projects. Recent studies
have investigated how developers perceive its ability to foster code
quality, developers' code ownership, and team building. MCR is
often being used with automated quality checks through static
analysis tools, testing or, ultimately, through automated builds
on a Continuous Integration (CI) infrastructure. With the aim
of understanding how developers use the outcome of CI builds
during code review and, more specifically, during the discussion
of pull requests, this paper empirically investigates the interplay
between pull request discussion and the use of CI by means
of 64,865 pull request discussions belonging to 69 open source
projects. After having analyzed to what extent a build outcome
in�uences the pull request merger, we qualitatively analyze the
content of 857 pull request discussions. Also, we complement
such an analysis with a survey involving 13 developers. While
pull requests with passed build have a higher chance of being
merged than failed ones, and while survey participants confirmed
this quantitative finding, other process-related factors play a
more important role in the pull request merge decision. Also,
the survey participants point out cases where a pull request can
be merged in presence of a CI failure, e.g., when a new pull
request is opened to cope with the failure, when the failure is
due to minor static analysis warnings. The study also indicates
that CI introduces extra complexity, as in many pull requests
developers have to solve non-trivial CI configuration issues.

Index Terms—Continuous Integration; Pull Requests; Modern
Code Reviews

I. INTRODUCTION

Modern Code Review (MCR) is nowadays a widely adopted
practice in industrial [1], [7] and open-source [4], [14], [20],
[30], [31] projects. MCR originates from the more formal
and rigorously defined idea of code inspection [11], in which
developers physically meet and perform a checklist-based code
reading and discussion. MCR makes this process less formal
and introduces a tool support for distributed code reviews.

Often, the MCR process is accompanied by automated
quality assessment tasks, such as the execution of static analysis
tools [27], or a verification activity performed executing test
cases accompanying the patch to be reviewed [36]. This activity
is put to its extreme when a Continuous Integration (CI) process
is adopted. CI features the automated execution of builds on a
dedicated infrastructure every time a change is being pushed.

Some hosting infrastructures integrate CI with code review,
so that developers can exploit the output of the CI builds to
drive (part of) their reviews. In particular, GitHub allows the
integration of hosted or internal CI solutions such as Travis-CI,
Circle-CI or Jenkins within the PR review process.

Previous work has shown how CI improves the overall quality
of a project [36], [41]. However, the actual interplay between
executing automated builds on a CI server and reviewing a
patch (or a PR) remains unexplored. Vasilescu et al. [36]
investigate how CI is being used to test a PR on a separate
branch, but nowadays, software projects have put in place a
tighter interplay between CI, executed since a PR is opened
and during the PR discussion, and code review.

The goal of this paper is to empirically investigate how
developers leverage CI outcome (and build logs) during a code
review process. More specifically, we analyze the process of
PR reviewing in 69 open source projects hosted on GitHub
and using Travis-CI as CI infrastructure.

As a first step, we looked at the build status when a PR
was opened, and when it was closed, to determine whether
such a status correlates with the chance of merging or rejecting
the PR. We also looked at the number and status of builds
executed during the PR review. Finally, we determine the extent
to which CI build-related factors contribute to existing PR
acceptance prediction models, in particular, the model by van
der Veen et al. [34], [35]. After that, we qualitatively analyzed
a statistically significant sample of 857 PRs that broke the build
when submitted, to investigate the extent to which different
kinds of build failures generate a PR discussion, and how this
discussion contributes to the PR acceptance. As an output of
this analysis, we produce a detailed taxonomy of build failures
being discussed in PRs (see Fig. 2), and of the nature of such
discussions. Finally, we complemented this qualitative analysis
with a survey, to which 13 developers participated.

The study results highlighted that while PRs with passed
builds have slightly more chances of being merged than when
builds are broken, other process-related factors have a stronger
correlation with such a merger. Nevertheless, 11 out of 13
respondents highlighted that the build outcome contribute to
the PR merger and the majority of them do not accept a
PR if the build is failing. However, they also pointed out
some exceptions to the latter rule that are reflected also in
our quantitative results (e.g., cases in which the build status is
ignored since it is related to minor warnings raised by static
analysis tools).

Replication Package. The data used in our study is available
for replication purposes [39].

978-1-7281-0591-8/19/$31.00 c© 2019 IEEE SANER 2019, Hangzhou, China
Research Papers

38

II. STUDY DESIGN

The goal of this study is to investigate how information from
CI builds (build status and content of build logs) is taken into
account during PR discussion, in order to decide whether the
PR should ultimately be merged or closed. The perspective is
of researchers interested to understand the adoption practices
of CI, also in the context of code reviews. The study context
consists of 69 open source projects hosted on GitHub and using
the Travis-CI infrastructure, and of 13 industrial developers
participating in a survey.

The first piece of information a developer receives from
CI is the build status. When a PR is opened, CI is triggered
and quality assessment tasks — including testing and static
analysis — are performed. A successful (i.e., green) build could
constitute already a positive input for the reviewers. If not,
the code could be modified during the PR discussion, in order
to make the build pass. We investigate how this happens by
answering our first research question:

RQ1 How does the CI build status relate to PR
merging?

If the build is not passing, the build failure may or may
not be discussed as part of the PR discussion, and reviewers
may bring up different pieces of information. First, they can
refer to the observed behavior, i.e., what is visible from the
build log. After that, they can start discussing the possible root
cause(s) of the problem. Finally, they can propose one or more
solutions, recommending changes that generate new builds,
which may or may not pass. We study reviewers' behavior in
discussing PRs by answering our second research question:

RQ2 When a PR generates a build failure, what
problems do developers discuss?

A. Context Selection and Data Extraction

The context consists of 69 open source projects hosted
on GitHub that use Travis-CI. Moreover, in order to assess
the synergies between CI and pull-based development, we
have surveyed 13 CI practitioners, selected based on personal
contacts of the authors.

The 69 projects we studied have been selected as follows.
We used the GitHub API in order to sort the whole set of
GitHub projects in terms of popularity computed considering
their number of stars. After that, we analyzed the projects from
the most to the least popular, filtering out those that did not use
Travis-CI. More specifically, we cloned the project repository
locally and searched for the presence of the .travis.yml file.
Then, using the Travis-CI API, we filtered out projects that
did not have any build executed as a consequence of a PR
event. Note that we only considered PRs having at least one
comment that has not been posted by a bot. This was done
using the GitHub API and matching the pattern [bot] in the
field Type, or, in other cases, by matching the same pattern
to the Login field. The search ended once we reached a list
containing 100 popular projects using Travis-CI to evaluate the
code contribution submitted as a PR to the project. Finally, we

have filtered out projects that had less than 100 build failures
related to PRs submission, leading to the 69 studied projects.

To extract the data needed for our analysis, we first
downloaded and extracted information about each build using
the Travis-CI API. More specifically, we looked at the build
status (passed, failed, errored or canceled), the type of event that
has generated the build (e.g., push, pull request), the commit
ID related to the event along with its message, the number
of build jobs with their identifiers and, finally, the link to the
change in the GitHub repository. The latter is needed in order
to retrieve the PR number related to the build under analysis.

After that, we downloaded the log produced by Travis-CI
during the build process and, by means of regular expressions,
we checked the ending status of each job. Since Gallaba
et al. [13] pointed out that sometimes build passes because
of an abuse of the allow_failure (allow ignoring a failed
job), we considered a build failed even if a job fails (when
the allow_failure is set) while the build passes. Finally, we
discarded canceled builds, while we treated failed and errored
builds similarly (both considered as not passing).

Based on the collected data, we were able to reconstruct the
history in terms of builds status for each PR in our dataset.
However, this is not enough to answer RQ1. We also needed
to extract the factors impacting the PR merger as reported by
van der Veen et al. [34], [35]. Starting from the PRs number,
we used the GitHub API to download the detailed information
belonging to each of them, e.g., the number of changed lines,
the number of files involved, the number of comments.

As a result, we obtained a PR dataset made up of 189,700
pull requests, out of which 56,881 were closed without being
merged, and 132,819 ended with a merge operation. Finally,
in the overall dataset, we had a total of 64,865 PRs that broke
the CI process during their initial submission (i.e., creation).

B. Analysis Methodology

To address RQ1, we first check a quite “expected” conjecture,
i.e., whether PRs are more likely to be merged when the build
passes. Although this seems to be obvious, there may be still
many cases in which the build status is ignored, e.g., it is
related to a static analysis false positive, to a flaky/unaligned
test, to a change belonging to a different branch that has to
be merged, etc. We use the Fisher's exact test and the Odds
Ratio (OR) [12] to compare the odds passed builds have to
be merged against broken builds. We perform this analysis
considering the build status (i) when the PR was opened, and
(ii) upon its merger/closure.

Since the reasons behind a PR merger can clearly go beyond
the build status, we analyze how a number of factors — related
to the CI process and to the overall development process —
correlate with the merger. As build-related factors, we consider:
(i) the number of builds over the PR discussion; (ii) the
percentage of failed builds during the PR discussion over
the total number of builds; (iii) the status of the first build,
i.e., when the PR is submitted; and (iv) the status of the last
build, i.e., when the PR is merged or closed. We combine these
factors with process-related factors correlated by van der Veen

39

TABLE I
FACTORS WE CORRELATE WITH PR MERGER: BUILD-RELATED FACTORS

AND PROCESS FACTORS DEFINED BY VAN DER VEEN et al..
PROCESS FACTORS [34], [35]
Factor Description
Age PR duration from its creation
Contribution Rate % of authors' commits before the PR
Accept Rate % of previously merged PRs from the same author
Additions # of lines added in the PR commits
Deletions # of lines deleted in the PR commits
Commits # of commits included in the PR
Changed Files # of files changed upon opening the PR
Comments # of discussion comments
Review Comments # of comments in the PR attached to code
Core Member whether the PR author is a project member
Intra-Branch whether source and target PR repos match
Contains Fix whether the PR aims at fixing an issue
Last Comm. Mention whether the last commit mentions a user
Has Test Code whether test cases are included in the PR
BUILD-RELATED FACTORS
Factor Description
PR Builds # of builds over the PR discussion
Failed Builds % failed builds during the PR discussion
First Build Status build status when submitting the PR
Last Build Status build status upon merging/closing the PR

et al. [34], [35] with PR mergers and used to prioritize PRs.
The complete list of factors is reported in Table I.

To analyze how such factors (i.e., process-related factors
and build-related factors) correlate with a PR merger, we build
machine learning predictors on such factors considering the
merger as dependent variable. To understand the role played by
build-related factors we (i) build models with and without
considering these factors, and (ii) report indicators of the
importance of such factors in the machine learning models.

Before applying the machine learners, we identify groups of
factors that correlate and, for each group, we only keep one of
them. To this aim, we use the R varclus function of the Hmisc
package [18], producing a hierarchical clustering of features
based on their correlation, in turn computed with a specified
correlation measure (we use the Spearman's ρ rank correlation).
Then, we identify clusters by cutting the tree at a given level
of ρ2 that we set at ρ2 = 0.64, which corresponds to a strong
correlation (i.e., ρ = 0.8) [9]. After that, we remove features
that in our dataset do not vary or vary too much, because they
would not be useful to build a predictor. This is performed
using the RemoveUseless filter implemented in Weka [17],
which removes from a dataset, features that never vary as well
as features with a percentage of variance above a threshold
(we set to 99%). Finally, to deal with unbalanced data (in
terms of merged and not merged PRs), we try to apply under-
sampling on the majority class by means of SpreadSubSample
filter implemented in Weka [17]. However, as explained in
Section III-A, we report results without re-balancing as it does
not improve the results.

Then, we build the machine learning models on the training
set and use them to perform predictions on the test set. We
experiment with five different machine learners implemented in
Weka [17]: Decision Trees (J48), Bayesian classifiers, Random
Forests, Random Trees, and Bagging with Decision Trees. We
used such machine learners with their default configuration.

We run the models using a 10-fold cross validation over
the PR dataset and we report the Precision, Recall, Area

Under the Receiver Operating Characteristics curve (AUC),
and Matthews Correlation Coefficient (MCC) [23] for both
prediction categories (i.e., merged and not merged). We use
MCC since it is a measure used in machine learning assessing
the quality of a two-class classifier especially when the classes
are unbalanced. It ranges between -1 and 1 (0 means that the
approach performs like a random classifier) and it is defined
as:

MCC =
TP · TN − FP · FN√

(TP + FP)(FN + TN)(FP + TN)(TP + FN)

As for other correlation measures, MCC < 0.2 indicates a
low correlation, 0.2 ≤MCC < 0.4 a fair, 0.4 ≤MCC < 0.6
a moderate, 0.6 ≤ MCC < 0.8 a strong, and MCC ≥ 0.8
a very strong correlation [9]. More importantly, we report
information about the importance of the considered factors
using the Mean Decrease Impurity (MDI) [22] (averaged over
the cross-validation folds), which measures the importance of
variables on an ensemble of randomized trees.

To address RQ2, we randomly selected from the set of
64,865 build failures in our dataset a statistically significant
sample ensuring a 99% confidence level ± 5%. The build
failures in our sample have been chosen proportionally to
the number of PRs belonging to each project. When for a
project the overall number of PRs to include in the sample
was lower than 10, we oversampled and took 10 PRs from the
project. This resulted in the selection of 857 discussions that
we manually analyzed to characterize the problems discussed
by the developers when a PR generates a build failure.

The manual analysis was conducted to classify the PR
discussions as false positives (i.e., the discussion is unrelated
to the build failure) or assigning a set of “labels” describing
(i) the issue: the build failure issue subject of the discussion
(e.g., a test case failed), (ii) the root cause triggering the issue
identified in the discussion (e.g., a bug in the application logic),
and (iii) the solution discussed/adopted (e.g., the bug has been
fixed). Each of these labels was optional. For instance, it is
possible that in the PR comments only the build failure issue
is mentioned, without discussing possible solutions.

For each type of label (i.e., issue, root cause, solution), we
started from a predefined list of categories that we defined
running a pilot study in which the three authors manually
analyzed a random set of 30 PRs triggering build failures.
These 30 PRs are not part of the set of 857 PRs we use to
answer RQ2. Each of the 30 PRs was analyzed by each of the
authors and, in the end, an open discussion was performed to
agree on the procedure and on the categories to adopt.

The labeling procedure was supported by a shared Google
sheet and has been conducted as defined in the following.
The initial sample of 857 PRs has been divided into two
different sets (400+457). The first author labeled all the 400
discussions belonging to the first group, while the second and
third author acted as second evaluator for half of the discussions
each (200 each). Thus, every discussion belonging to the first
set was labeled by two authors. Each author independently
analyzed the discussions assigned to her, selecting the elements

40

TABLE II
SURVEY DESIGN (EXCLUDING DEMOGRAPHICS).

GENERAL QUESTIONS
Does the status of the build influence the merger of a PR?
If the last build during the PR discussion fails, do you still merge the PR?
What are the reasons for accepting the PR even in presence of a build failure?
QUESTIONS ASKED FOR EACH BUILD FAILURE CATEGORY AT THE FIRST-LEVEL OF FIG. 2.
How often do you discuss in the code review process the problems described above?
Please rate the usefulness of discussing different kinds of build failures in the context of PR review.
What are the actions performed during PR review in order to make the build successful or to isolate/locate the problem?

being discussed and categorizing them using the predefined
categories or defining a new one when needed. To assign the
labels and categories to a discussion the author inspected the
whole PR discussion as well as the build failure log, in order
to obtain contextual information needed to better understand
the discussion. Every time an author had to label a discussion,
the Google sheet also showed the list of categories created so
far, allowing her to select one of the already defined categories.
This means that a new category defined by author a1 is visible
to author a2 that, however, does not know where this label was
used. In a context like the one in this work, where the number
of possible categories (e.g., types of build failure issues) is
extremely high, such a choice helps using consistent naming
while not introducing a substantial bias.

At the end of the first round of the labeling process, an
open discussion was performed among the authors in order
to solve conflicts. A conflict in this scenario can happen for
three reasons. First, only one of the two authors could label the
discussion as a “false positive”. Second, the two authors could
have assigned different labels (i.e., elements being discussed)
to the same discussion (e.g., the first author labeled the issue
discussed while the second author labeled the root cause).
Third, assuming that the same labels are selected (e.g., both
labeled the type of issue discussed), the category value could be
different (i.e., two different issues are discussed accordingly to
the two authors). For these reasons, we had a quite high number
of conflicted artifacts (144 out of 400 — 36%). Once the
agreement on the procedure has been reached, the first author
worked in isolation to run the second round of the labeling
process, accounting for the remaining 457 PRs discussions.

The qualitative analysis of a statistically significant sample
of PR discussions could be insufficient to unveil the CI build
failures developers scrutinize when assessing a PR and, also,
how CI is used during a PR review process, e.g., whether
developers debug a PR by performing subsequent CI builds
or whether this is done on their local machines. To collect
additional data, we conducted a survey in which we asked
developers how they use CI when reviewing PRs. The survey
questionnaire was made up of the following sections: (i)
Demographics questions which asked for the highest degree,
development experience, current position, domain in which
the developer works, and CI technology being used. (ii) More
specific expertise questions investigating the knowledge about
CI pipeline usage and management, and code reviewing. (iii)
Questions about the relationship between CI builds and merge
of a PR (second part of Table II). (iv) Questions about the

extent to which different kinds of build failures are discussed,
whether the discussion has the purpose of determining the
PR merger, and what the actions performed to aid the PR
resolution are (example of available answers are: nothing, local
build, re-execute the build on the CI server). Respondents had
to provide an answer to these question for each category of
build failure being discussed that emerged from the first part
of the study (qualitative analysis of PRs).

The survey questionnaire has been made available through
Google Forms, and shared through personal contacts of the
authors. We received 13 responses from professional developers
(one of which product owner and another pipeline configurator)
working in different domains, including financial, system
integration, consultancy, travel, and digital identity management.
Their expertise in configuring a CI pipeline was low in 2 cases,
moderate in 5 cases, high in 6 cases. Instead, the expertise in
pull-based development and code review was low in 2 cases,
moderate in 4 cases, and high in 7 cases. Finally, respondents
reported the use of different CI environments, in some cases
multiple ones: Jenkins (7), GitLab (4), Bamboo (3), Concourse,
TeamCity and Azure DevOps (one each).

III. STUDY RESULTS

This section presents and discusses results aimed at address-
ing the research questions formulated in Section II.

A. How does the CI build status relate to PR merging?

Out of the 189,700 studied PRs, 109,889 (57.9%) were only
built once, i.e., when the PR was created. Further 32,918
(17.4%) were built twice, and only the remaining 24.7%
underwent multiple builds, with a long tail of outliers: the
minimum, first and second quartile is 1 build, the third quartile
is 2 builds, and the maximum is 256.

A deeper analysis of the cases having a high number
of build failures, highlighted two scenarios. There are PRs
aimed to release a new version of the software (PR #7033 in
meteor/meteor1) in which the description states: “This pull
request is an easy way to collect changes that will be going
into Meteor 1.3.3 and run tests against them in an isolated,
consistent environment (CircleCI and TravisCI)”. In these cases,
each commit part of the release generates a new build on the
CI server, and only when all the commits successfully build the
PR is merged and the new version is released. Moreover, there
are cases in which, during the PR discussion, the integrator

1To access the PR body use https://github.com/$owner/$repo/pull/$PR as
https://github.com/meteor/meteor/pull/7033

41

TABLE III
RELATIONSHIP BETWEEN PR OUTCOME AND BUILD STATUS (I) WHEN

OPENING THE PR (II) WHEN CLOSING/MERGING IT.
Status when opening the PR

Merged Not merged
Passed 101,513 38,654
Failed 31,305 18,228
Status when closing/merging the PR

Merged Not merged
Passed 113,218 43,775
Failed 19,600 13,107

0%

0%

85%

77%

15%

23%Opening_PR_Build_Status

Closing_PR_Build_Status

100 50 0 50 100
Percentage

Response Strongly disagree Weakly disagree Neutral Agree Strongly agree

Fig. 1. Survey: Impact of build status on the PR merging decision.

points out problems that must be addressed for having a chance
of a PR merger (for instance PR #503 in moment/moment).
In the latter case, the contributor starts to modify her change
following the comments pointed out by the integrator.

The upper part of Table III reports the confusion matrix
of the number of PRs that caused a build pass and failure
upon opening them and, in each case, they were either merged
or closed. Fisher's exact test indicates that passed PRs have
significantly more chances of being merged than those that
failed (p-value< 0.001), with an OR=1.5. Similarly, if we
analyze the build status when the build was closed or merged
(Table III bottom part), again we obtain a statistically significant
difference (p-value< 0.001), with an OR raising to 1.72. In
both cases, although it is clear also from the test results that
PR with passed builds have significantly more chances of
being merged, we can still notice a conspicuous percentage
of “outlier” PRs. Above all, both tables show a large number
of PRs being closed although the build passes (both at the
beginning and at the end of the discussion), indicating that,
as expected, there are other reasons for PR outcome beyond
the build status itself. At the same time, Table III also shows
how 31,305 successfully merged PRs are opened with a failed
build. Nevertheless, only 19,600 of them remain in the failed
status at the end of the discussion. The remaining 11,705 have
their build status fixed during the PR discussion.

As explained in Section II-B, we complemented the analysis
of PRs with a survey. Fig. 1 reports responses to the general
questions i.e., whether developers agree that (i) the build status
when opening the PR and (ii) the last build status, would
influence the decision upon merging the PR. Respondents also
indicated the reasons why a PR could still be merged even if the
build fails: a new PR is opened in the meantime to address the
failure (5 responses), the failure (e.g., static analysis warning)
is considered irrelevant (5 responses), the failure is not related
to the PR change (5 responses), or the failure is transient (1
response).

TABLE IV
RESULTS OF THE RANDOM FOREST PREDICTORS ON PR MERGER.

PREDICTION OF NOT-MERGED PRS
Build-Related Feat. TP Rate FP Rate Precision Recall MCC AUC
Yes 0.53 0.08 0.74 0.53 0.50 0.82
No 0.51 0.07 0.75 0.51 0.50 0.82

PREDICTION OF MERGED PRS
Build-Related Feat. TP Rate FP Rate Precision Recall MCC AUC
Yes 0.92 0.47 0.82 0.92 0.50 0.82
No 0.93 0.49 0.82 0.93 0.50 0.83

TABLE V
MEAN DECREASE IMPURITY (MDI) OF FACTORS USED TO PREDICT PR

MERGER (BUILD-RELATED FACTORS ARE SHOWN IN ITALIC).
Factor MDI
Core Member 0.394
Contains Fix 0.349
Age 0.229
Last Build Status (ends failing) 0.101
First Build Status (starts failing) 0.088
Failed Builds 0.046
Changed Files 0.027
Commits 0.026
Review Comments 0.024
Comments 0.024
PR Builds 0.017
Has Test Code 0.014
Deletions 0.012
Last Comm. Mention 0.005
Contribution Rate 0.002
Accept Rate 0.002

PR opened with passed CI builds have 1.5 more chances of being
merged than those failing. Such chances increase up to 1.72 if
the build passes at the end of the PR discussion. The survey
respondents indicate that build should pass to merge a PR, but
also point out cases in which this is not needed.

After having obtained an overview of the extent to which
the build status correlates with the chance of merging a PR, we
combined PR-related factors with the process factors considered
by van der Veen et al. [34], [35]. Note that two process-related
factors were filtered out during the preprocessing, i.e., additions
and intra_branch. The former because highly correlates with
the number of changed files in the PR, while the latter never
changes in the whole PR dataset.

Results of merger prediction using Random Forests are
reported in Table IV with and without build-related factors.
Since Random Forests outperform other predictors, the latter
are omitted. Also, we report results without re-balancing (under-
sampling) as it worsens the models' performance in both cases.
As the table shows, (confirming what done by van der Veen
et al. [34], [35]) it is possible to use process-related factors
to predict a PR merger. Overall, the model achieves a good
precision especially when predicting merged PRs, and the recall
is particularly high when predicting merger. Also the AUC
(0.82) is satisfactory.

At the same time, we can notice how adding/removing
build-related factors, in essence, does not change the model's
prediction performance. This seems to indicate that, while
having a passed build matters when deciding whether merging
a PR or not, there might be more important factors influencing
such a decision.

42

Causes for build
failures

Compilation
errors

Syntax
error

Dependenc.
unavailable/

broken

Test
compilation

Compiler
option not
enabled

Code
compilation

Dependenc.
unavailable/

broken

Compilation
fails on a

given
platform

Syntax
error

Test case
failures

Bugs

Library
update
issues

Test/code
alignment

Test case
issues

Depend.
issues

Flaky
tests

Test case
config.

Errors in
test cases

Test case
timeout

Test output
config.

Test case
parameters

Application
logic errors

Integration
bugs

Bug
manifests in

specific
environm.

Bug in
external
libraries

Depend.
not found
at runtime

Test case
not updated

to reflect
code

changes

Uncommit.
code

Functional.
tested but

not
implement.

Static
analysis
checks

Document.
style /

formatting
Process
checks

Code
checks

Validation
of commit
messages

Licensing

Missing
contributor

license
agreement

Licensing
header

warnings

Syntax
errors

Candidate
bugs (e.g.,
miss null
check)

Style /
formatting /
indentation

Code
smells

Vulnerabil.
issues

Coding
standards
violated

Config.
issues

Travis
config.

SSH
config.

Build
config.

Credentials CI image
config.

Travis does
not pull

external PR
Build

timeouts
Emulator-

related
errors

Container
handling

OS
command

usages
Dependen.
handling

Environment
settings

Issues with
third-party

components

Platform-
dependent
commands

Deployment
errors

Archive
creationDependenc.

unavailable/
broken

Dependenc.
upgraded
automatic.
caused the
problems

Plugin
installation
problems

Build
prepare

8

GitHub-
related
errors

Problem
fatching

data

Rate limit
for GitHub

APIs

Build
hangs

Connection
errors

No space
left on the

device:
cache
issues

Process-
related
issues

Maintenan.
issues

Build failure
depends on

other PR

Readability
of Travis log

Excessive
config. file

size

33

12

3

74

55

43

2

17

36

217

177

104

67

Fig. 2. Taxonomy of PR discussions.

Table V reports the MDI for the considered factors, ranked
in order of importance. As the table shows, the first three
factors (not related to the build status) exhibit an MDI much
larger than the remaining ones. Clearly, PRs belonging to a
core member have a higher likelihood of being merged, and
so PRs related to bug fixes. As already pointed out by van
der Veen et al. [34], [35], the PR age matters, in the sense
that recent PRs have more chances of being merged than older
ones (as time passes, the merging likelihood decreases). We
can also notice that, although some build-related factors (and
in particular those related to the build status at the end and at
the beginning of the PR discussion) are ranked high, they have
(in terms of MDI) less influence than the three process-related
factors previously mentioned.

While build-related factors — especially those related to the build
status when the PR is opened and when it is closed/merged —
are ranked high by PR merger predictors, their role/effect on the
predictor performance is negligible with respect to process-related
factors previously considered by van der Veen et al. [34], [35].
Instead, the number of builds positively correlates with the merger.

B. When a PR generates a build failure, what problems do
developers discuss?

Fig. 2 shows the taxonomy of build failures being discussed
in PRs. We defined seven high-level categories, in turn, detailed
into sub-categories. The number reported in the up-corner of
each category refers to the number of PRs discussed, while the
one at the bottom refers to the not discussed ones. While (not
surprisingly) most of the build failures are due to testing or
static analysis, we can also notice how process-related issues or
cases of build hangs are frequently discussed when they occur.
This is less likely for build prepare or compilation failures.

TABLE VI
TYPE OF INFORMATION DISCUSSED BY CATEGORY.

Description Root Cause Solution Patch
Build hangs 12 6 2 0
Build prepare 8 3 1 0
Compilation errors 17 9 7 4
Configuration issues 74 58 29 9
Process-related issues 43 23 14 6
Static Analysis checks 101 54 71 57
Test case failures 212 154 101 68

Overall 467 307 225 144

Table VI reports the typical content of a PR discussion
for different categories. In most cases, at the minimum, the
discussion provides a short description of the problem and,
sometimes (more often for testing and configuration problems)
the problem root cause. In some cases, a solution (and even a
patch) is provided, and this happens more often for static
analysis problems, but also for about half of the testing,
configuration, and compiling errors.

In the following, we qualitatively explain each category of
build failure we found discussed in PRs, by also providing
examples and by reporting specific feedback and insights
provided by our survey participants.

Test case failures may be due to different kinds of problems,
including (i) the presence of bugs in the production code and/or
in third-party libraries, (ii) the way in which the developers
have configured/executed the test suite, e.g., flaky tests or
wrong configuration of the test suite to be executed, (iii)
a misalignment between production and test code, and (iv)
missing/wrong dependencies only identified at runtime (i.e.,
not discovered by the compiler, if any).

Those kind of problems are the ones that are highly discussed
by contributors once having submitted a PR that ends with a

43

build failure. This result is consistent with the respondents to
our survey. Indeed, only 2 out of 13 respondents stated that
test case failures in CI are only occasionally discussed, while 8
of them report that the discussion is useful for the PR merger.
Moreover, when trying to isolate and address those kinds of
failures, 7 respondents use the private builds, while other 4
prefer to re-execute the build on the CI server.

Going more in-depth on the type of highly discussed failures,
we start from those cases due to bugs related to third-party
libraries, often less obvious to discover than production code
bugs. A more interesting and discussed problem is the one in
which the bug that results in a test case failure belongs to an
external library that has been used in order to add/optimize a
functionality. Consider as an example the PR #1409 from
the scrapy/scrapy project in which the contributors argue
about an undesired behavior due to a new release of a
library. Specifically, one comment states that “it is probably
a bug introduced by some dependency upgrade [...] Twisted
15.3.0 was released yesterday for example”, while another one
highlights the possible root cause: “[...] it can be related to
twisted/twisted@a8d8a0c - see this line.”.

It may also happen that a test suite fails only in a specific
environment. Consider the PR #4877 belonging to server-
less/serverless in which the test failures occur on a specific
version of “Node.js”. One comment mentions: “It actually
crashes [...] due to usage of [].includes which Node v4 doesn't
support.” and also refers to the patch: “I patched it by �xing
both test and includes usage”.

There are also cases in which the test case failure is due to
errors in the test case specification, such as flaky test. A clear
example is reported in the PR #9921 from ElemeFE/element in
which one comment points out the presence of flakiness, and
the build outcome becomes green only after having merged a
different PR entitled Fix date-picker �aky test #9923, clearly
related to that issue.

Finally, a recurring discussion is related to the way in which
the developer sets the environment before running the testing
phase. As an example, in the PR #822 of Unitech/pm2, a
comment highlights a wrong set-up causing a failure “pm2
kill doesn't peaceful stop the Stream Pipe, it will be destroyed
until there have no WritableStream in Pipes”, as well as a
possible fix for it.

Unsurprisingly, test case failures are the ones mainly discussed in
the PR review process, especially when those are related to bugs
in third-party components that are not trivial to be discovered,
wrong test case specifications, and wrong clean-up strategies.

Static Analysis Checks. By analyzing the sample of PRs,
we identified various kinds of discussions about problems
raised by static analysis tools. These include (i) styling and
formatting issues in the documentation, (ii) licensing issues, (iii)
malformed commit messages, and (iv) code checks violations
e.g., code smells, potential vulnerabilities or bugs, and code
style issues. Those problems are less frequent and less discussed
than test case failures as also felt by our survey respondents.
Ten out of 13 respondents, never or occasionally discuss static

analysis issues in the code review process, and only 2 of them
think that the discussion is often useful in order to fix the
problem.

Looking at some examples, developers explicitly point out
style issue even in the documentation, in order to merge a
PR. See for instance PR #7666 of etcd-io/etcd: (“[..] etcd
does not use line-breaks on markdown docs, so please put one
paragraph in one line”).

More important, we found cases in which someone suggests
skipping a rule that is breaking a build because of a static
analysis tool false positive. For example, in chartjs/Chart.js
there is PR #3016 where the build failed because of a missing
null check where the variable content was, instead, checked
elsewhere in the code. After a long discussion, someone argues
for a better configuration of static analysis tools: “For the
future, can you specify the proper JSHint settings, please?”.
The latter is also confirmed in our survey results in which 2
participants highlight the need for reconfiguring the tool used
(e.g., modify the properties of the rule violated or remove it)
in order to address the problem.

Instead, there are cases in which the contributor has to
address the violations if she wants a chance to have her PR
submission accepted in the actual code base, e.g., using tools
that automatically fix style issues. It is the case of PR #3157
belonging to zeit/next.js, where a reviewer asks the contributor
to execute the command “npm run lint – –fix” before the PR
review starts.

Discussions related to static analysis tools concern various sorts
of problems, from documentation and code style to potential
bugs and vulnerabilities. While in some cases the discussions end
pointing out a false positive of the tool and suggests to better
configure it, in other cases, developers might want to make the
linter happy in order to have the PR merged.

Con�guration issues. The configuration of CI might not be
trivial in many circumstances, causing itself different kinds
of build failures. Such kinds of problems are discussed quite
often in the analyzed sample of PRs. Also, as reported by our
survey respondents, fixing such problems require complex and
effort-prone activities for reconfiguring the CI pipeline.

In order to properly change the versions of the build environ-
ment without impacting the overall build process, developers
have to use the allowed_failure functionality provided by Travis-
CI. Indeed, the PR #11110 from angular/angular.js implies a
passed build even if there is a broken build executed under the
new version of npm (that is expected to be broken).

A very frequent problem in using CI pipeline is related
to a wrong strategy used for dependencies management,
such as compatibility issues between the external library and
the environment or the impossibility to recover a specific
dependency needed. For instance, the PR #8738 of freeCode-
Camp/freeCodeCamp clearly states that: “[..] react-dom 15.1
update propagated out to npm [..] before the react 15.1 update
landed, causing builds to temporarily break.”. Similar problems
occur when there is the need for upgrading a library towards
a new version: PR #10219 of electron/electron mentions “[..]

44

we should use sys_mmap instead of sys_mmap2 for arm and
i386”.

Quite often in our dataset PRs break due to an unsuitable
choice of tool support. For example, in the discussion of
the PR #11693 of adobe/brackets project, developers point
out inconsistencies between two static analysis tools, creating
confusion: (“There would be jslint annotations listed all over
the code base. Is it compatible with eslint annotations?”).

Emulators, when needed, also represent a tricky element to
be configured. The PR #2716 in AFNetworking/AFNetworking
fails because the build process attempts to use the wrong
emulator (“the 7.0 devices are really 7.0.3 devices[..] associate
the runtime version with the OS version [..] and use that value
instead.”).

Finally, in order to improve the build maintainability,
platform-dependent commands should be avoided or used with
parsimony. PR #2084 of the BVLC/caffe project mentions “The
�rst Travis-CI build failed because −std = c + +0x was
missing [..] replace the Linux-only timing commands with the
standardized platform independent ones”.

Even if developers acknowledge benefits in using CI along with
PR review, its “dark side” is represented by the difficulties
arising when configuring the CI pipeline. In some cases, a
wrong configuration results in build maintainability problems
or additional build failures.

Process-related issues. One noticeable case of process-
related issue is when a PR fails to build because of unrelated
problems currently being handled in a completely different
(open) PR. For instance, the PR #4148 of google/protobuf
mentioned (“This will cause tests to fail (intendedly), as it will
succeed only after PR #4147 merged.”). In this case, as also
confirmed in our survey results, the discussion is not important
in order to have a PR merger. In other words, the PR owner
could decide to accept the PR even in the presence of the failure
or to postpone its acceptance once the other change has put
in (PR #16015 in angular/angular.js). Other cases of process-
related issues are due to maintenance activities being performed
on the CI pipeline, which introduced bugs in the build scripts
or were simply not completed yet. For these reasons the build
failed. As reported by the survey respondents, such cases
might be problematic as they require a reconfiguration of the
CI pipeline.

Build failures occurring when opening a PR might not be due
to the actual change one wants to merge, but rather to a ripple
effect caused by a different issue.

Compilation errors are very little discussed in our PRs
sample even if 5 respondents declare that they usually discuss
compiler-related issues and think that the discussion helps in
making the PR merged.

Compilation errors might be generic issues occurring in
production or test code, but also problems due to broken
dependencies or to the use of a wrong compiler version (an
exhaustive treatment of compiler-related build failures is in
the work of Seo et al. [32]). While generic problems could

easily be solved through private builds [10] (as also confirmed
by our survey results, 8 out of 13 respondents declare to use
local build to address the problem), compiler version issues are
trickier and make CI useful. One such example is discussed in
the PR #3868 of gogs/gogs in which the contributor reports
that in a specific version of Go the base64.RawURLEncoding
functionality is missing and that “The *.ini parser doesn't
play nice with padded base64 encodings and the unpadded
encodings were introduced with Go 1.5.”.

Most compilation errors could be solved in private build, but in
some cases, such as issues due to specific compiler versions, the
CI server reveals to be useful.

Build hangs. These kinds of problems occur when the CI
server is not able to run the build because of issues such as
connection errors, not enough space on the device, or out of
memory errors. Noteworthy such failures are often due to (not
reproducible) transient-errors. It is very uncommon to have PRs
that generate a failure due to this kind of problems even if most
of them are discussed. The latter contradicts what reported in
our survey results, in which 11 out of 13 respondents never
or occasionally discuss build hangs issues and think that the
discussion is not useful for the PR merger. One such problem,
due to too many connections to a server, is discussed in the PR
#14229 of angular/angular.js: “Do we have too many projects
using the same Sauce key?”.

Build prepare. This category includes all problems occurring
before starting the build process, e.g., due to (i) fetching data on
the repository and (ii) overcoming rate limits on GitHub. While
the former are relatively trivial problems rarely discussed, the
latter are brought to the attention of developers because depend
on the way in which the CI pipeline is configured. For example,
the PR #13269 of adobe/brackets mentions: “GitHub API rate
limit exceeded” and also explains a possible root cause: “I'll
pull upstream and push to trigger the build again. The error
messages show it did not get very far into the build process.”

Since that in many cases those are related to trivial issues,
almost all of our respondents never discuss them and feel that
the discussion is never used to fix the problem. As expected,
in addressing build-prepare issues the most used action is the
one aimed to re-execute the build on the CI server.

Failures belonging to build hangs are quite uncommon, even if
they are always discussed during the PR review. Failures related
to the build prepare, relatively easily to cope with, are rarely
discussed.

IV. THREATS TO VALIDITY

Threats to construct validity concern the relationship between
theory and observation. In our study, they can be mainly
due to (i) imprecisions in data extracted to build models
of RQ1, (ii) the limited observability we could have on the
PR review process by observing the discussion on GitHub.
Concerning (i), besides properly testing our scripts, we followed
the detailed description of how process-related factors were
extracted from van der Veen's master's thesis [34]. Concerning
(ii), we complemented the analysis of discussion with the

45

inspection of build logs. In addition, to complement our study
on GitHub, we performed a survey with developers.

Threats to internal validity concern factors internal to our
study that could have influenced our results. In RQ1, besides
analyzing build-related factors in isolation, we studied their
effect together with process-related factors [34], [35]. Also,
we used default configurations for machine learners. We are
aware that an appropriate tuning of these configurations could
improve the classification results, which therefore represent a
lower bound.

In RQ2, we limited subjectiveness in discussion classification
having multiple annotators for the first half of the sample.

Threats to conclusions validity concern the relationship
between the experimentation and the outcome. Besides RQ1

where we used, when possible, appropriate statistical procedures
and effect size measures to support our conjectures, we are
aware that results of our qualitative analysis are limited to a
sample of our dataset. We performed a stratified sampling to
obtain it, and we used a sample size of 857 PRs.

Threats to external validity concern the generalization of our
findings. We used a number of criteria to select the projects
subject of our analysis. However, it is still possible that findings
from the PR quantitative and qualitative analysis do not reflect,
for instance, review and CI practices in industry. Also, the
number of surveyed developers is rather small, but this is
mainly due to the need for limiting ourselves to experts in
code review and CI. Also we intendedly avoided targeting
GitHub developers to be compliant with GitHub terms of use.

V. RELATED WORK

This section discusses literature relevant to this work and,
specifically, studies related to (i) code reviews and PRs, (ii)
the relationship between the use of PRs and CI, and (iii) the
analysis of build failures.

A. Studies on Code Reviews

Previous studies have investigated MCR practices. Weißger-
ber et al. [38] highlighted how smaller patches have a higher
chance of being accepted, while Baysal et al. [3] found that the
code review response time and outcome is highly dependent
on non-technical factors such as the patch writer experience.
The latter is also confirmed by Bosu and Carver [8] who
reported how changes by core developers are reviewed faster
and have more chances of being accepted compared to the
ones by peripheral developers. Our study complements the
ones above by considering the impact of the build outcome
and by studying the discussion of build failures.

Several studies have highlighted how MCR is being used
sharing and transferring knowledge, educating newcomers
or building a strong community [1], [4], [7], [30]. From a
different perspective, German et al. [14] studied the fairness
(e.g., allocation of outcomes, dissemination of information)
of code reviewing in OpenStack. Their results highlight that,
even if there are many cases in which the code review process
is considered fair, there are also cases in which the lack of
fairness affects developers' trajectory and productivity.

Kononenko et al. [20] investigated the developers' perception
of code review quality, highlighting that the feedback provided
in the review process is the most important factor influencing
the review quality.

Spadini et al. [33] studied how MCR is applied to test code.
Their results indicate how the code review environment is not
capable of providing some needed information, e.g., achieved
code coverage, or dependencies between test and production
code. Therefore, developers complement the work carried out
in the code review environment with local test execution. Our
work attempts to bridge this gap, focusing on different artifacts
involved in software development: production and test code,
but also build-related configuration files.

Finally, several works analyzed the impact of code review
on software quality. Some studies highlighted that there is a
positive effect of code review on software quality related to
the likelihood of introducing anti-patterns [26] and bugs [2],
[24].

B. Studies on Pull Requests

PR discussions are a specific kind of MCR. Gousios
et al. [15] studied PR usage in the context of distributed
software development showing that the number of PRs is
increasing over time. Furthermore, they identified factors highly
correlated with a PR lifetime and its merging likelihood. Such
factors include the project size, the number of changed files,
and the test coverage.

In a follow-up qualitative study, Gousios et al. [16] analyzed
the factors that integrators consider in their review process
aimed to accept or reject a PR. Their results show that the
targeted area, the existence of test cases, and the code quality
are important factors influencing the PR merger. Moreover, they
found a challenge related to how to prioritize PRs to be merged.
To solve the latter issue, van der Veen et al. [34], [35] proposed
an approach aimed at prioritizing PRs named PRIORITIZER.
As we have explained in Section II-B, PRIORITIZER considers
14 different factors related to the PR process. Kononenko
et al. [21], instead, studied the PR merges in an industrial
project. Their results highlighted that the merge type (merge
via squashing, GitHub and cherry-picking) has a significant
effect on merge time. Moreover, they quantitatively found that
both PR review time and merge decision are affected by PR size,
discussion, and author experience, while surveying developers
they identified the presence of other important factors as PR
quality and type of change.

In our study, we have built a model correlating the PR
merge likelihood with a number of factors, including (i) the
factors considered by van der Veen et al. [34], [35], and (ii)
build-related factors. A detailed description of such factors is
reported in Table I.

C. Relationship Between Pull Requests and Continuous Inte-
gration

Previous studies have investigated the relationship existing
between the usage of PRs and CI processes. First of all,
Zhao et al. [41] by means of mining historical data of open

46

source projects and conducting a survey among open source
developers tried to identify what is the impact of adopting
process automation on other development practices accounting
for commit frequency, code churn, pull requests and issues
closing, and testing. Their findings highlight that CI adoption
align with the “commit often” rule while the “commit small”
rule is only partially followed. Moreover, the number of PRs
closed remains stable after the CI adoption even if the latencies
on evaluating them increase.

Vasilescu et al. [36], mining historical data on process
metrics and outcomes in 246 open source projects hosted
on GitHub, have tried to quantify the effects of process
automation on productivity (i.e., number of PRs merged per
month) and code quality (i.e., number of bugs per unit time).
More specifically, by using multiple regression models, they
found that after the CI adoption, the number of merged PRs
submitted by core developers increase while decreasing their
chance of being rejected, and also the ones submitted by
external contributors have a fewer chance of being rejected.
However, the availability of test suite increases the chance of
identifying defects in particular in PRs submitted by outsiders,
resulting in a higher rejection rate. In other words, after the
introduction of process automation, PRs coming from core
developers have a higher chance to be accepted than others. In
terms of code quality, instead, even if the introduction of CI
increases the overall number of PRs that have to be handled by
core members, there is not an increase on the number of user-
reported bugs. The main finding is that CI adoption increases
productivity without a negative effect on code quality.

Bernardo et al. [6], investigated the impact the adoption of
CI has on the time to release PRs (i.e., both merge and delivery
time). By analyzing the history of 87 projects before and after
CI adoption, they found that over half of the projects deliver
PRs quicker after having adopted CI. Before adopting CI, the
integration effort is one of the factors impacting delivery time,
whereas after introducing CI the queue rank or a PR (i.e.,
the time a PR takes to be merged compared to other PRs)
impacts release cycle the most. While both their studies and
ours investigate the impact of CI on PR outcome, our focus
is different. Rather than studying PR delivery time, we first
investigate how the build status and the evolution of builds over
the PR discussion relates with the merger, and (ii) above all,
qualitatively study how the results of a build failure contribute
to the discussion of a PR.

The closest related study to ours is the one by Rahman
et al. [28]. They quantitatively studied the impact of CI on
code review process by mining around 600k automated build
entries. They found that passed builds encourage new code
review participation, and that a higher build frequency impacts
on the number of comments in a PR (considered as a proxy of
the review quality). Rather than looking at how passed builds
encourage reviews, we study the CI builds from an opposite
perspective, i.e., we specifically look at build failures and
investigate whether and how different kinds of build failures
are discussed over PRs, with the aim of finding a problem root
cause, a solution, and, ultimately, merge the PR.

D. Studies on Build Failures

Our study is aimed at identifying whether and what type
of build failures are mainly discussed during the PR review
process. Previous works have investigated the build failures in
industrial and open source projects. Miller [25] characterized
build failures in Microsoft projects, while Seo et al. [32] deeply
investigated the compilation errors that occur in the build
process at Google. Rausch et al. [29], instead, analyzing open
source data found that test case failures are predominant in
breaking the CI process. The latter have been investigated
in-depth by Beller et al. [5] who found that testing is the core
of CI and, the highest percentage of build failures has been
generated by this activities. Moreover, mining open source Java
projects, Zampetti et al. [40] looked at build failures produced
by static analysis tools.

From a different perspective, Kerzazi et al. [19] studied the
cost of dealing with build failures by observing the development
of a .Net project over 6 months. The study revealed that over
2k hours of activity are devoted to dealing with build failures,
with an average of one hour per build failure. Finally, Vassallo
et al. [37] compared the distribution of build failures between
OSS and the ones from a financial organization, revealing
that OSS projects exhibit mainly unit testing failures while, in
industry release preparation failures occur the most.

While previous studies analyzed to what extent such failures
occur in builds, and how they are solved afterwards, we mainly
focus on how they are brought to the attention of participants
of a PR discussion, how root causes for different kinds of build
failures are identified, discussed, and solved.

VI. CONCLUSION

We conducted an empirical study aimed at investigating
the relation between Pull Request (PR) discussions and
Continuous Integration (CI) build failures. Our quantitative
analysis indicates that the build status upon closing a PR
discussion has a limited influence on the PR merger, even if
our survey respondents felt this was often the case for them.
However, respondents also pointed out cases in which a PR
was merged with a failed build, e.g., when the build failure was
related to some irrelevant static analysis warnings, or when a
new PR was in the meantime opened to cope with the failure.

Our qualitative analysis indicated that the PR discussion
mainly focuses on testing and static analysis problems. How-
ever, we also found many discussions related to the CI pipeline
(mis)configuration. Despite the overall benefits introduced by
automated continuous builds, the study points out difficulties
in properly configuring and maintaining a CI pipeline, that
create maintainability issues or unnecessary build failures.

Results of our study can be used to provide developers
better guidance on how CI can be used together with pull
request review, and code review in general. Also, it highlights
the complexity of dealing with CI in certain situations, e.g.,
when dealing with emulated environments, non-deterministic
(flaky) tests, or different environments exhibiting an inconsistent
behavior.

47

REFERENCES

[1] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 2013 international conference
on software engineering. IEEE Press, 2013.

[2] G. Bavota and B. Russo, “Four eyes are better than two: On the impact
of code reviews on software quality,” in IEEE International Conference
on Software Maintenance and Evolution, (ICSME), 2015.

[3] O. Baysal, O. Kononenko, R. Holmes, and M. Godfrey, “The influence of
non-technical factors on code review,” in Reverse Engineering (WCRE),
2013 20th Working Conference on, 2013.

[4] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, 2014.

[5] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the
build: An explorative analysis of travis ci with github,” in Proceedings
of the International Conference on Mining Software Repositories (MSR).
ACM, 2017.

[6] J. H. Bernardo, D. A. da Costa, and U. Kulesza, “Studying the impact
of adopting continuous integration on the delivery time of pull requests,”
in Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, 2018.

[7] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process
aspects and social dynamics of contemporary code review: Insights from
open source development and industrial practice at microsoft,” IEEE
Transactions on Software Engineering, 2017.

[8] A. Bosu and J. C. Carver, “Characteristics of the vulnerable code changes
identified through peer code review,” in 36th International Conference on
Software Engineering, ICSE '14, Companion Proceedings, Hyderabad,
India, May 31 - June 07, 2014.

[9] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Lawrence Earlbaum Associates, 1988.

[10] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley
Signature Series). Addison-Wesley Professional, 2007.

[11] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, 1976.

[12] R. A. Fisher, “Confidence limits for a cross-product ratio,” Australian
Journal of Statistics, 1962.

[13] K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh, “Noise and
heterogeneity in historical build data: an empirical study of travis
CI,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018.

[14] D. M. Germán, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, and
K. Inoue, “"was my contribution fairly reviewed?": a framework to study
the perception of fairness in modern code reviews,” in Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018.

[15] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model,” in 36th International
Conference on Software Engineering, ICSE '14, Hyderabad, India - May
31 - June 07, 2014.

[16] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator's
perspective,” in 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1.

[17] M. A. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD
Explorations, 2009.

[18] F. E. Harrell Jr, with contributions from Charles Dupont, and many
others., Hmisc: Harrell Miscellaneous, 2017, r package version 4.0-3.
[Online]. Available: https://CRAN.R-project.org/package=Hmisc

[19] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds break?
an empirical study,” in 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014.

[20] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality: How
developers see it,” in Proceedings of the 38th International Conference
on Software Engineering, 2016.

[21] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and
B. de Water, “Studying pull request merges: a case study of shopify's
active merchant,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice. ACM, 2018.

[22] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Proceedings of
the 26th International Conference on Neural Information Processing
Systems. Curran Associates Inc., 2013.

[23] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-
Protein Structure, 1975.

[24] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014.

[25] A. Miller, “A hundred days of continuous integration,” in Proceedings
of the Agile 2008, 2008.

[26] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in Proc. of the 22nd Int'l Conf. on Software Analysis, Evolution, and
Reengineering (SANER), 2015.

[27] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 2015.

[28] M. M. Rahman and C. K. Roy, “Impact of continuous integration on
code reviews,” in Proceedings of the 14th International Conference on
Mining Software Repositories, MSR 2017, Buenos Aires, Argentina, May
20-28, 2017.

[29] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows of java-
based open-source software,” in Proceedings of the 14th International
Conference on Mining Software Repositories. ACM, 2017.

[30] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: A case study of the apache server,” in Proceedings
of the 30th International Conference on Software Engineering, 2008.

[31] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011.

[32] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W. Bowdidge,
“Programmers' build errors: a case study (at Google),” in Proc. Int'l Conf
on Software Engineering (ICSE), 2014.

[33] D. Spadini, M. F. Aniche, M. D. Storey, M. Bruntink, and A. Bacchelli,
“When testing meets code review: why and how developers review
tests,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.

[34] E. van der Veen, “Prioritizing pull requests,” Delft, The Netherlands,
2014.

[35] E. van der Veen, G. Gousios, and A. Zaidman, “Automatically prioritizing
pull requests,” in 12th IEEE/ACM Working Conference on Mining
Software Repositories, MSR 2015, Florence, Italy, May 16-17, 2015.

[36] B. Vasilescu, Y. Yu, H. Wang, P. T. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015.

[37] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner,
A. Zaidman, M. Di Penta, and S. Panichella, “A tale of CI build failures:
An open source and a financial organization perspective,” in 2017 IEEE
International Conference on Software Maintenance and Evolution, ICSME
2017, Shanghai, China, September 17-22, 2017.

[38] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 2008 International Working Conference on Mining
Software Repositories, 2008.

[39] F. Zampetti, G. Bavota, G. Canfora, and M. Di Penta, “A study on the
interplay between pull request review and continuous integration builds.
Replication Package https://goo.gl/KjTpxp.”

[40] F. Zampetti, S. Scalabrino, R. Oliveto, M. Di Penta, and G. Canfora,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in Proceedings of the 14th International Conference
on Mining Software Repositories. ACM, 2017.

[41] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The impact
of continuous integration on other software development practices: a
large-scale empirical study,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017.

48

