
How Long does a Bug Survive? An Empirical Study

Gerardo Canfora∗, Michele Ceccarelli∗∗, Luigi Cerulo∗∗, Massimiliano Di Penta∗

∗ Dept. of Engineering-RCOST, University of Sannio, Italy

∗∗ Dept. of Science, University of Sannio, Italy

{canfora, ceccarelli, lcerulo, dipenta}@unisannio.it

Abstract—Corrective maintenance activities (bug fixing) can be
performed a long time after a bug introduction, or shortly after
it. Such a time interval, i.e., the bug survival time, may depend
on many factors, e.g., the bug severity/harmfulness, but also on
how likely does the bug manifest itself and how difficult was to
fix it.

This paper proposes the use of survival analysis aimed at
determining the relationship between the risk of not fixing a bug
within a given time frame and specific source code constructs—
e.g., expression operators or programming language constructs—
changed when fixing the bug. We estimate the survival time by
extracting, from versioning repositories, changes introducing and
fixing bugs, and then correlate such a time—by means of survival
models—with the constructs changed during bug-fixing.

Results of a study performed on data extracted from the
versioning repository of four open source projects—Eclipse,
Mozilla, OpenLDAP, and Vuze—indicate that long-lived bugs can
be characterized by changes to specific code constructs.

Keywords: Bug Fixing, Survival Analysis, Empirical Study.

I. INTRODUCTION

When developers maintain or evolve a software system,

they introduce bugs. These bugs survive in the system until

someone reveals a failure—i.e., how the bug manifests itself

as an unexpected system behavior—and how who discovers

the bug reports the failure to the development team.

The time a bug can survive in a system since its introduction

can sensibly vary, depending on various factors. In some cases,

the bug could survive for a long time, because it does not

cause major problems to the system behavior, e.g., it seldom

manifests itself, or its effects do not compromise the system

functionality. In other cases, however, the bug could remain

in the system for a long time because it is difficult to identify.

In general, trying to ensure that bugs—and especially critical

bugs—are fixed before issuing a new system release on the

market, is quite desirable because it would limit post-release

corrective maintenance. For this reason verification & vali-

dation (V & V) activities, i.e., code inspection, static analysis

and testing, need to be performed; in some cases, however, the

limited time or resources available make a thorough V & V

infeasible, and a prioritization would be necessary. Approaches

such as that of Gyimóthy et al. [1] use source code metrics to

identify likely fault-prone classes that require a better V & V.

With respect to other works aimed at prioritizing V & V

activities, we are interested to understand whether changes

to specific code construct, such as control flow statements,

synchronization constructs, exception handling, or different

kinds of expressions, could lead to bugs having a longer

survival time than others. Some authors, in particular Kim

et al. [2], [3], characterized a change by a set of features

extracted from it, such as the change length, variation of

cyclomatic complexity, plus the textual content of the change,

and used machine-learning algorithms to predict bugs from

their introducing changes. Rather than aiming at building a bug

predictor, as Kim et al. did, our aim is to identify what kinds of

code constructs, introduced in the context of a bug introducing

change and then fixed in the context of a bug fixing, could

relate to bugs having a longer (or shorter) survival time than

others. Such findings would be useful to provide developers

with indications whether code containing particular constructs

(or combinations of them) deserves a better V & V, not just

because it is likely fault-prone, but also because the defect, if

present, may remain in the system for a long time.

This paper reports an empirical study aimed at characteriz-

ing the survival of bugs in four open source systems, Eclipse,

Mozilla, OpenLDAP, and Vuze. Specifically, we characterize

each bug with respect to specific source code constructs

involved in fixing changes, for example control structures,

expression operators, exception handling, etc. We measure

the bug survival time by identifying the bug-fixing commits

and—through CVS annotations—the bug introducing changes,

and correlate—using the Cox proportional hazard model [4]—

such a time with code constructs extracted from the bug-fixing

change. We focus on two research questions, namely:

1) whether there are specific code constructs—identified in

bug fixing changes—that specifically characterize long-

lived bugs as opposed to short-lived bugs, and

2) whether the interaction—i.e., co-occurrence—of specific

code features characterizes long- and short-lived bugs.

The study indicates that there are specific code constructs

that characterize bugs having a longer survival time than

others, while some other constructs characterize bugs being

fixed in a relatively short time. Above all, in many cases a

bug survival time can be better characterized in terms of the

interaction of multiple constructs, which can have an effect

different from the single constructs.

The paper is organized as follows. Section II provides

background notions on survival analysis. Section III describes

the approaches used to identify bug-introducing changes and

to extract constructs from bug-fixing changes, and explains

how we characterized bug survival time with respect to code

constructs changed during bug-fixing. Section IV describes

the empirical study we performed. Results are reported and

discussed in Section V, while Section VI discusses the threats

to validity. Section VII discusses the related literature, and

Section VIII concludes the paper and identifies directions for

future work.

II. BACKGROUND ON SURVIVAL ANALYSIS

Survival analysis is a set of statistical procedures for which

the outcome variable of interest is time until an event occurs.

The event is usually meant as death for biological organisms

or failure for mechanical systems, but in general it may be any

designated experience of interest that may happen to a subject

(e.g., the survival time of a bug since its introduction in the

system). The survival time variable, T , is referred as a random

variable, as it gives the time a subject has “survived” over some

follow up period. The survival function S(t) = Pr(T > t)
gives the probability that a subject survives longer than some

specified time t. The survival function does not increase as t

increases and conventionally, S(0) = 1, is the start of a study,
and, for time t → ∞, S(∞) → 0. The hazard function h(t)
gives the instantaneous potential per unit time for the event to

occur, given that the subject has survived up to time t. Survival

and hazard functions are in essence opposed concepts, in that

the survival function focuses on surviving whereas the hazard

function focuses on failing, given survival up to a certain time

point. The instantaneous failure rate, i.e., the probability to fail

at time t, is given by f(t) = S(t)h(t). Survival and hazard

functions are related by the following equations:

S(t) = exp

[

−

∫ t

0

h(u) du

]

h(t) = −
dS(t)

dt

1

S(t)

The goal of survival analysis is to estimate survival and

hazard functions from data (Kaplan–Meier estimator [5]), and

to assess the relationship of explanatory variables (covariates)

with survival time.

Survival analysis offers two classes of regression models to

perform such tasks: parametric models, when survival time

follows some known distribution [6], such as Exponential,

Weibull, or Log-logistic; and proportional hazard models—

e.g., the semi-parametric Cox proportional hazard model [4]—

making no assumption about the distribution of survival time,

and thus suitable for cases like ours where such an assumption

does not always hold.

In both cases the response variable of interest is the haz-

ard function h(t) which is expressed in terms of a base-

line hazard function h0(t), a set of explanatory variables,

X =< X1, X2, . . . , Xn >, and regression coefficients β =<

β1, β2, . . . , βn >. An explanatory variable could be also

the product of two or more other variables, modeling their

interactions.

The Cox proportional hazard model has an hazard function

defined as: h(t) = h0(t) · eβX . It is less restrictive than

parametric models as the baseline hazard function, h0(t), is
left unspecified, and the only assumption is that the hazards

of two individuals, with different X values, are proportional.

Under such assumptions it is possible to estimate β in the

exponential part of the model by maximizing a likelihood

function. The β parameters can be used to define the hazard

ratio (HR) effect size measure for each explanatory variable,

which is the multiplicative effect of such a variable on the

risk of the event to occur. In general, a HR is defined as the

hazard for one individual divided by the hazard for a different

individual distinguished by their values for the X variables.

The exponential of a parameter βi is the HR between an

individual, X i, with the i-th explanatory variable set to one

and all others set to zero, and a reference individual, X0, with

all variables set to zero:

hXi(t)

hX0(t)
=

h0(t) · e
βi

h0(t) · eβ1·0+,β2·0+,...,+βn·0
= eβi

A HR greater than one for an explanatory variable (feature)

indicates that the presence of such a feature lead to a higher

probability than for other cases of the event (bug fixing in our

case) to occur. In other words, HR > 1 indicates, for that

variable, a lower survival time than in other cases. Vice versa,

a HR < 1 indicates a higher survival time than in other cases.

Further details on survival analysis can be found in a book by

Kleinbaum and Klein [6].

III. IDENTIFYING BUG-INTRODUCING CHANGES AND

SURVIVAL TIME

To build a bug survival model we need to extract, from

versioning systems, the dependent variable (survival time) and

independent variables (code constructs changed in bug fixing).

This section explains how this is done through a sequence of

four steps.

A. Step 1: identification of bug fixing from the commit note

First, we download the versioning system (CVS in our

study) log and extract the information relevant for our study,

specifically for each commit the file changed, its revision, the

commit timestamp, the committer id, and the commit note.

We cluster together related commits into change sets using

the heuristic by Zimmermann et al. [7], which groups together

commits performed by the same committer, having the same

commit note and a temporal distance smaller than 200 seconds.

Then, we restrict our attention to change sets referring to

bug fixes, i.e., those matching a pattern such as bug #ID, issue

#ID, or similar, where #ID is a valid bug ID from the bug

tracking system of the project [8]. For projects (such as Vuze

in our study) where commit notes did not contain explicit

references to bug IDs, we select change sets where the commit

notes contain patterns referring to a likely bug fixing—e.g.,

issue fixed—identified by means of a manual analysis of the

log. Finally, we further restrict to only bug fixings for which

a limited set of files (maximum 3) were changed. In other

words, we only consider very focused bug fixings for which

it is possible to precisely characterize the fix change in terms

of modified code constructs.

B. Step 2: identification of bug-introducing changes

To identify the change(s) in which a bug was introduced,

we used an approach inspired by the work of Kim et al. [2],

[3]. Specifically, we rely on the CVS annotation which, given

TABLE I
CHANGED CONSTRUCTS EXTRACTED FROM THE SOURCE CODE.

NAME DESCRIPTION EXAMPLES

expr..array Array access []
expr..arith Arithmetic operators +, −, ∗, /, %
expr..bit Bit operators &, |, <<, >>
expr..boolean Boolean operators ||, &&, !
expr..comparison Comparison operators >, ≥, <, ≤, ==
expr..field Structure field access − >, .
call Function call foo(), printf(. . .)
ctrl Control structures for, while, if, switch, do
decl Declarations class, interface, extends
exception Exception handling try, catch, throw, finally
import Java import import
obj Object creation/referencing new, super, this
qualifier Qualifiers private, public, protected, static
sync Synchronization constructs synchronized

a file revision, indicates for each file line the revision when

the last change to that line occurred. In essence, the approach

works as follows:

1) First, for each file fi involved in the bug fixing, we extract

the file revision before the bug fixing.

2) Then, we identify blank lines and lines that only contain

comments using an island parser developed in Perl.

3) Finally we use the annotate option of CVS to identify,

for each source line, when it was changed before the bug

fixing. In doing this, we exclude the blank and comment

lines identified in the previous step. This produces, for

each file fi, a set of revisions ri,j that likely introduced

the bug in that file, excluding however cases where the

revision when the bug was introduced is revision 1.1, i.e.,
the entire file was created.

C. Step 3: identification of code constructs changed during

bug-fixing

To identify source code constructs that were changed in the

bug fix, we use a tokenizer implemented in Perl to extract

tokens from fi revisions before and after the fix, and to

identify tokens which occurrences changed between the two

revisions. In this study, we consider different kinds of tokens—

reported in Table I—corresponding to various programming

language constructs. We group together related tokens, e.g., all

Boolean operators, all arithmetic operators, control structures,

etc. Finally, it is worthwhile noticing that we used different

analyzers for Java, C, and C++, in that some constructs apply

to specific languages only, e.g., −> only to C and C++, try,

catch, new only to C++ and Java, synchronized only to Java.

It is important to explain that in this context we extracted

the constructs modified when fixing the bug, rather than when

introducing it. The reason is that we are interested to identify

what code constructs were changed when fixing a bug as,

instead, the bug introducing change would have involved

many other constructs related to that change, and that do not

necessarily induced the bug.

D. Step 4: estimation of the survival time

To estimate how long did a bug remain in the system, we

identify: (i) the latest fixing timestamp, i.e., the highest times-

tamp among all commits of the bug-fixing change set. That

TABLE II
CHARACTERISTICS OF THE DATA SET USED IN THE STUDY.

SYSTEM TIME INTERVAL # BUG SAMPLE

CONSIDERED FIXINGS SIZE

Mozilla Apr 1998–Feb 2011 43,568 3,858

OpenLDAP Aug 1008–Feb 2011 2,808 522

Eclipse May 2001–Aug 2008 16,077 5,137

Vuze Jul 2003–Apr 2010 1,591 604

is, when all changes needed to fix the bug were committed;

and (ii) the latest bug introducing timestamp, i.e., the latest

revision among the ones identified in Step 2.

IV. EMPIRICAL STUDY

The goal of this study is to analyze the relation between

source code constructs modified in bug-fixing changes and the

permanence of such bugs, i.e., survival time, in the system. The

purpose is to understand how a longer (or shorter) survival

time correlates with specific kinds of source code changes.

The quality focus is related to software fault-proneness, and

specifically to exploring code constructs that can characterize

bug fixings performed a short time (or a long time) after

the bug has been introduced. The perspective is mainly of

researchers interested to explore the nature of bug fixings,

with the aim of identifying construct that could contribute to

increase, or decrease, the permanence of a bug in a software

system.

The context consists of a sample of bugs extracted from

four open source software systems, belonging to different

domains and developed with different programming languages,

namely two C/C++ systems—Mozilla and OpenLDAP—and

two Java systems, Eclipse and Vuze. Mozilla1 is a suite

comprising a Web browser, an email client, and other Internet

utilities. OpenLDAP2 is an open source implementation of

the Lightweight Directory Access Protocol (LDAP). Eclipse3

is an open-source integrated development environment. It is

a platform used both in open-source communities and in

industry. Vuze4—known also as Azureus—is an open source

BitTorrent client written in Java. BitTorrent is a protocol that

allows to exchange files over the Internet. Table II reports,

for the four projects, some overall information relevant for

our study, i.e., the period of time considered, the number

of bug-fixing change sets, and their subset considered in our

study. The sample consists of randomly selected bugs among

those occurred in the time interval considered. As explained in

Section III—since we are interested to relate fixings of specific

code constructs with the survival time—we only considered

bug fixings involving up to 3 files.

Figure 1 shows, for each system, the distribution of the

permanence of a bug into a system, i.e., survival time. Figure 2

shows, for the four systems, the percentages of bug fixing

change sets—in the considered sample—involving different

kinds of code constructs identified with the procedure de-

scribed in Section III.

1http://www.mozilla.org
2http://www.openldap.org
3http://www.eclipse.org
4http://www.vuze.com

69

57
45

38
31

25 24
17 15 12

4 3 3

0

20

40

60

80

100

c
a
ll

e
x

p
r:

:a
ri

th c
tr

l

e
x

p
r:

:c
o

m
p

a
ri

s
o

n

o
b

j

e
x
p

r:
:b

o
o

le
a

n

q
u

a
li
fi
e

r

im
p

o
rt

e
x
p

r:
:a

rr
a

y

e
x

c
e
p

ti
o

n

d
e

c
l

e
x

p
r:

:b
it

s
y

n
c

Feature

%
 o

f
b

u
g

 f
ix

in
g

s

(a) Eclipse

61
55

46
39 38

29
23

7 6 6 1

0

20

40

60

80

100

e
x

p
r:

:a
ri

th

c
a
ll

c
tr

l

e
x

p
r:

:b
o

o
le

a
n

e
x

p
r:

:c
o

m
p

a
ri

s
o

n

e
x
p

r:
:f

ie
ld

e
x
p

r:
:b

it

e
x

p
r:

:a
rr

a
y

o
b

j

q
u

a
li
fi

e
r

d
e
c

l

Feature

%
 o

f
b

u
g

 f
ix

in
g

s

(b) Mozilla

56

38 38 37 33 29 27

12
8

3 0.4 0.4
0

20

40

60

80

100

e
x

p
r:

:a
ri

th

e
x

p
r:

:c
o

m
p

a
ri

s
o

n

c
tr

l

c
a
ll

e
x
p

r:
:f

ie
ld

e
x

p
r:

:b
o

o
le

a
n

e
x
p

r:
:b

it

e
x

p
r:

:a
rr

a
y

d
e
c

l

q
u

a
li
fi

e
r

o
b

j

e
x

c
e

p
ti

o
n

Feature

%
 o

f
b

u
g

 f
ix

in
g

s

(c) OpenLDAP

70
62

43 39
28 27 24

14 13 11
3 3 2

0

20

40

60

80

100

c
a
ll

e
x

p
r:

:a
ri

th c
tr

l

e
x

p
r:

:c
o

m
p

a
ri

s
o

n

e
x
p

r:
:b

o
o

le
a

n

o
b

j

q
u

a
li
fi
e

r

e
x
p

r:
:a

rr
a

y

im
p

o
rt

e
x

c
e
p

ti
o

n

s
y

n
c

e
x

p
r:

:b
it

d
e

c
l

Feature

%
 o

f
b

u
g

 f
ix

in
g

s
(d) Vuze

Fig. 2. Percentages of bug fixings involving different kinds of code constructs.

Eclipse Mozilla Vuze Openldap

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

W
e
e
k
s

Fig. 1. Distribution of the bug survival time (in week) for each system.

A. Research Questions

This study aims at addressing the following research ques-

tions:

• RQ1: What are the code constructs characterizing long-

lived bugs, as opposed to bugs quickly removed? The ra-

tionale of this research question is to understand whether

bug fixes performed shortly after their introduction con-

sist in different kinds of changes than bug fixes performed

a long time after their introduction. In this study, we

characterize changes based on the programming lan-

guage constructs being modified. The conjecture is that

some language constructs—e.g. pointer (de)referencing,

exception-related keywords, bit-manipulation operators—

can represent symptoms of subtle bugs, difficult to spots

or, on the other way around, of bugs easier to manifest

and fix than others. The analysis carried out in this

research question would help to understand the origin

of bugs that tend to remain in the system for a short or

for a longer time, and could therefore suggest to better

test the changed artifacts when the change involved some

specific programming language constructs. For example,

it can happen that errors related to some specific expres-

sion operators can be easily found, while an improper

exception handling might result more difficult to find and

thus the error would remain in the system for a long time.

• RQ2: Is there any significant interaction between code

constructs with respect to their effect on the risk of

a bug to remain in the system for a long time? The

rationale here is similar to RQ1, however in this case

we do not consider each code construct separately, we

rather consider their interaction, e.g., a short-lived (or

long lived) bug is fixed by changing together a conditional

statement and a comparison operator, or a loop statement

and an exception handling construct. It can happens

for example that a change involving a particular code

construct increases, or decreases, the survival time of

a bug when it is applied in conjunction with another

construct.

B. Analysis Method

This section describes the statistical procedures used to

address the research questions formulated above.

The selection of parameters to be included in the model

is performed using the Akaike Information Criterion (AIC)

[9]. The AIC measures the goodness of fit of a statistical

model, and specifically relies on the concept of information

entropy to provide an estimation of the information lost when

a particular model is used. The AIC is often used (as in our

case) with an iterative procedure that computes the AIC for

different models (in our case, models considering different

combinations of the considered code constructs). To select the

optimal model we used the stepAIC procedure of the MASS R

package, using 1, 000 steps as the maximum stopping criterion.

Such a number has been calibrated increasing the number of

steps until we did not observe any change in the obtained

model.

We repeat the AIC procedure for different kinds of survival

models, namely parametric models where the bug survival

in terms of code constructs is fitted with respect to some

distributions (logistic, exponential, or Weibull), and the semi-

parametric Cox proportional hazard model. Also, for para-

metric models, we use the χ2 goodness-of-fit test to check

whether the empirical model fits the theoretical distribution,

H0: there is no significant difference between the theoretical

and the empirical model, while for the Cox model we use

appropriate tests, i.e.,the Likelihood ratio test, the Wald test,

and the logrank test (for these tests, the null hypothesis must

be rejected in order to have a significant Cox model) [4]. In

addition, the Cox proportional hazard assumption is validated

through a proportion test (using χ2 goodness-of-fit) on each

construct involved in the model.

For both RQ1 and RQ2, we show, for the four systems, a ta-

ble with the set of code constructs (single constructs for RQ1,

both single constructs and pairwise interaction of constructs

for RQ2) that have a significant effect on the survival time,

together with the HRs defined in Section II. Also, we plot and

discuss the empirical Kaplan–Meier estimated survival curves,

in which the x-axis indicates the time (in weeks) and the y-axis

indicates the observed proportion of not-fixed (survived) bugs

in which the construct being plotted is present. The curves are

plotted with respect to a baseline curve, that is the average

survival curve of all subjects. This means that the survival

curve of a construct with HR > 1 is below the baseline,

while it is above when HR < 1.

V. RESULTS

This section reports and discusses results of the empirical

study defined in Section IV. Raw data and working data sets

are available for replication purposes5.

5http://www.rcost.unisannio.it/mdipenta/survival-data.tgz

TABLE III
HR OF DIFFERENT CODE CONSTRUCTS FOR THE COX MULTIVARIATE

MODEL (WITHOUT INTERACTIONS).

CODE CONSTRUCT ECLIPSE MOZILLA OPENLDAP VUZE

expr..arith – 1.14 – 1.27

expr..array 1.13 0.83 – 1.22

expr..comparison 1.09 1.06 – 1.17∗

expr..field – 1.11 – –

call 1.12 – – 1.16

exception 1.08 – – –

obj 1.09 1.36 – –

qualifier 1.09 – – –

sync – NA NA 1.63∗

A. RQ1: What are the code constructs characterizing long-

lived bugs, as opposed to bugs quickly removed?

First, we use AIC to determine which distribution was

better suited to build the survival model without interaction,

as well as to select the code constructs to be used in the

model. In all cases, the Weibull model exhibited the lowest

AIC, indicating that possibly the Weibull distribution could

be suitable to model the bug survival in terms of fixed code

constructs. However, when building the Weibull model—and

the same happened for other parametric models, i.e., logistic

and exponential—the χ2 test provided a p-value< 0.05, i.e.,
the model significantly deviates from the distribution. For this

reason, we have decided to adopt the Cox proportional hazard

model (although its AIC is higher), which is a semi-parametric

model and does not require a fitting with a particular distri-

bution. The Cox models identified by the AIC passed all tests

(Likelihood ratio test, Wald test, and logrank test) with a p-

value < 0.05, and did not reject the χ2 hypothesis (p-value

> 0.05) for the test of proportional hazard assumption with the

exception of the ctrl statements for Eclipse, that was therefore

excluded.

Table III reports HRs provided by the Cox proportional

hazard model. Significant factors (p-value <0.05) are shown

in boldface, while marginally significant ones (0.5 ≤ p-value

< 0.1) are annotated with a “*”. “NA” indicates that a code

construct is not applicable for the programming language used

in that system (e.g., synchronize does not exist in C), while

“–” indicates that the code construct was not included in the

Cox model by the AIC. As it can be noticed, the OpenLDAP

column is empty. This is because the AIC procedure, for the

model without interaction, was not able to select any construct.

Results shown in Table III suggest that, although there are

code constructs that—without considering the interaction with

others—significantly affect the bug survival time, this is not

always consistent across systems, and, in some cases, the

constructs do not have a significant effect on the survival time.

Nevertheless, some of the HRs can provide some indications

already:

• Array access was included in all models, although it

does not have a significant effect for Vuze. Despite such

a construct was involved in a small percentage of bug

fixings (≤ 15%, as shown in Figure 2), it seems to have

TABLE IV
HR OF DIFFERENT CODE CONSTRUCTS FOR THE COX MULTIVARIATE

MODEL (WITH INTERACTIONS).

CODE CONSTRUCT ECLIPSE MOZILLA OPENLDAP VUZE

expr..arith – 1.14 – 0.96

expr..array 1.14 1.03 1.22 1.27∗

expr..bit – 1.06 1.23 2.89

expr..boolean – 0.95 – 0.76

expr..comparison 1.10 1.04 – 1.06

expr..field – 1.34 1.11 –

call 1.06 1.10 1.06 0.86

ctrl 1.17 1.02 1.14 1.03

decl 1.15 0.65 1.23 –

exception 1.28 – – 1.63

import 0.97 NA NA –

obj 0.88∗ 1.20 – 1.52

qualifier – 1.22 2.48 0.48

sync 0.85 NA NA 3.47

expr..arith:call – – – 1.51

expr..arith:decl – 1.97 – –

expr..arith:obj – – – 0.46

expr..arith:qualifier – – – 2.46

expr..array:obj – 0.74 – –

expr..array:expr..bit – – 1.69 –

expr..array:expr..comparison – 0.73 – –

expr..array:qualifier – – 0.09 –

expr..bit:call – – – 0.20

expr..bit:ctrl – 0.79 0.56 –

expr..bit:expr..field – 0.86 – –

expr..bit:qualifier – 1.32 – –

expr..boolean:call – – – 1.53∗

expr..boolean:expr..bit – 1.21∗ – –

expr..comparison:ctrl 0.87∗ – – –

expr..comparison:decl 0.74∗ – – –

expr..comparison:exception – – – 0.56∗

expr..comparison:expr..bit – 1.19 – –

expr..comparison:import 1.17∗ NA NA –

expr..comparison:qualifier – – – 1.42

expr..comparison:sync 1.60 – – –

expr..comparison:obj – 1.38∗ – –

expr..field:call – 0.77 – –

expr..field:decl – – 0.35 –

ctrl:exception 0.75 – – –

decl:call – – 2.92 –

import:exception 0.80 NA NA –

obj:call 1.29 – – –

obj:decl 1.32 – – –

obj:exception 1.20∗ – – –

qualifier:call – 0.69 – –

sync:ctrl – NA NA 0.30

an effect on the bug survival time. Such an effect is

significant for Eclipse and Mozilla, although in the first

case the HR is (slightly) greater than one (1.13) and in the

second case is lower than one (0.83). The HR for Vuze

is higher than one, though the effect is not statistically

significant. Thus, bugs involving array access have lower

HR for Mozilla (C/C++) than for the Java systems; this

could be due to the fact that array-related bugs could be

more difficult to find in C/C++ rather than in Java, e.g.,

because Java does boundary checking.

• Arithmetic expressions are typical bug fixings, and have a

statistically significant effect for Mozilla and Vuze, with

HRs greater than one in both cases. Indeed, making a

mistake (even a small one) in arithmetic expressions is

quite frequent, as shown in Figure 2. Despite being quite

frequent, as indicated in the first line of Table III, bugs

involving arithmetic expressions seem to remain in the

system for a shorter time than other bugs.

• Object instantiation has a significant effect for Eclipse

and Mozilla, however in the first case the HR is ∼ 1,
while it is greater than one (1.36) in the second case.

• Synchronization primitives have a high (1.63) and

marginally significant HR for Vuze. Vuze is a system

that makes a massive usage of network connections, thus

synchronization is more important than for Eclipse. Note

that synchronization primitives were considered for Java

systems only, as for C/C++ these are not part of the

language, but handled by specific system calls instead.

B. RQ2: Is there any significant interaction between code

constructs with respect to their effect on the risk of a bug

to remain in the system for a long time?

Table IV reports HRs of factors and factors interactions

that were chosen by the AIC procedure. Also in this case

significant factors have HRs highlighted in boldface, and

marginally significant ones are highlighted with a “*”. The

selected Cox model successfully passed the likelihood ratio

test, the Wald test, the logrank test (p-value < 0.01 in all

cases), and the proportional hazard assumption is verified for

all factors.

As it can be noticed from the top part of Table IV, there

are factors that were not considered in the models without

interaction (or were not significant), while they are included

in the models with interaction. This is for example the case

of bit manipulation expressions (though significant only for

Vuze) and Boolean expressions (though not significant), of

exceptions (selected and significant for both Java systems,

Eclipse and Vuze). Specifically, it can be noticed that excep-

tions exhibit a high HR, suggesting that changing exception

handling well characterizes bugs being fixed in a short time:

this is quite intuitive as an improper exception handling is

a kind of bug quite usual in many object-oriented systems,

and in many cases (though not always) solving it could be

straight-forward.

When looking at interactions, we can notice that many

of them concern either combinations of different kinds of

expressions, or combinations of expressions with other code

constructs. Moreover, the HR of an explanatory variable may

exhibit an opposite ratio when considered in association with

another explanatory variable. This leads to an increment or

a decrement in the survival time of a bug, as shown in the

survival plots of Figure 3. The figure shows the proportion

of not-yet fixed bugs involving a certain code construct,

if compared with the overall proportion of “all” bugs. For

example:

• Bit-expressions and control-flow constructs significantly

interact for both C/C++ systems and exhibit an HR < 1,
i.e., 0.79 for Mozilla and 0.56 for OpenLDAP. The usage

of bit operators in control flow constructs is, indeed,

something that could be difficult to understand and thus

makes bug fixing difficult.

• Qualifiers and other code constructs in OpenLDAP and

Vuze. Changes in qualifiers exhibit a significant HR both

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Week

P
ro

p
o
rt

io
n
 n

o
t
fi
xe

d

all

exception

import:exception

(a) Eclipse

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Week

P
ro

p
o
rt

io
n
 n

o
t
fi
xe

d

all

expr..field

expr..field:call

(b) Mozilla

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Week

P
ro

p
o
rt

io
n
 n

o
t
fi
xe

d

all

qualifier

expr..array:qualifier

(c) OpenLDAP

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Week

P
ro

p
o
rt

io
n
 n

o
t
fi
xe

d

all

qualifier

expr..arith:qualifier

(d) Vuze

Fig. 3. Survival curves showing the effect of variable interactions.

in OpenLDAP (HR=2.48) and Vuze (HR=0.48). It is in-

teresting to note that the HR is completely inverted when

the qualifier variable interacts with changes in expres-

sions, i.e., array expressions in OpenLDAP (HR=0.09)

and arithmetic expressions in Vuze (HR=2.46). This

suggests that, when expressions are changed, bugs survive

longer in OpenLDAP than in Vuze (Figures 3(c) and

3(d)). In particular, for OpenLDAP it can be noticed that

bugs related to qualifiers only were all removed within 1

week, while those also relating expressions have a longer

survival time. One reason for such a difference is that,

while for Java programs changes in qualifiers mainly deal

with visibility (public, protected, private), in C qualifiers

related to declaring a variable as extern or static, and

declaring a static variable where not appropriate could

induce errors not easy to fix.

• Synchronization and control-flow in Vuze: although we

have previously discussed how synchronization constructs

exhibit a high HR, as they constitute an important prob-

lem for Vuze and thus have to be fixed quite quickly,

their interaction with control-flow constructs could either

make the bug unlikely to manifest, or make it hard to fix.

• Comparison expression and synchronization in Eclipse:

intuitively this fix looks relatively similar to the previous

one, as comparison expression are often used within con-

trol flow constructs, in this case the HR is higher than one.

A possible interpretation could be that synchronizations

could be more difficult to be performed in a networking

system (Vuze) rather than in a IDE (Eclipse).

• Interaction of exception handling with other code con-

structs: as we have explained above, exception handling

per se represents a construct correlated with a high HR,

i.e., quick bug fixing. However, when such a construct

interacts with other constructs, HR would change. For

example, in Vuze there is a marginal interaction with

comparison expressions (HR=0.56), in Eclipse a signifi-

cant interaction with control-flow constructs (HR=0.75),

imports (HR=0.80, see Figure 3(a)), and a marginally

significant interaction with object instantiation/access

(HR=1.20). Besides the last cases, when the fixing of

an exception also requires handling control flow or con-

ditionals, the bug could become harder to find or to fix.

A similar situation could occur when, other than adding a

catch, it could be necessary to import the right exception

that should be caught or thrown.

• Field access operators: although alone (see the top-

side of Table IV) they are included in Mozilla and

OpenLDAP and exhibit a HR > 1, when they interact

with other constructs (in Mozilla and OpenLDAP) HR

tend to become lower than one. This is the case, for

instance, of function calls in Mozilla (HR=0.77, see Fig-

ure 3(a)), bit operators in Mozilla (HR=0.86, though not

significant), and declarations in OpenLDAP (HR=0.35).

Thus, especially in C code, the access to data structures

increases the bug survival time, if changes to such an

access are combined with changes to declarations (e.g.,

of the structure itself) or with the usage of the field access

within a function call.

C. Examples

This section aims at providing a qualitative discussion of

some exemplar bugs among those we examined, for which we

found, by reading the versioning system commit notes and/or

the bug reports, information about the nature of the bug fixing

and we were able to relate it with the code constructs being

changed and to find an interpretation of why it was likely that

the bug survived in the system more or less than other bugs.

In Eclipse, bug #900846 was likely introduced by a change

occurred on 2004-06-03, and then fixed on 2005-04-04, by

changing an exception handler and importing the proper ex-

ception, i.e., interaction of code constructs import::exception,

which for Eclipse shows a HR=0.80, thus a longer time to

fix than other bugs. Comments added to the bug were: (i)

Frederic Fusier 2005-04-02 10:30:57 EST - “Created attach-

ment 19481 [details] Trace of 2 ResourceException”, (ii) John

Arthorne 2005-04-04 11:11:18 EDT - “Agreed, this is a bug in

6https://bugs.eclipse.org/bugs/show bug.cgi?id=90084

ProjectPreferences. The entire block in comment #3 needs to

be inside an IWorkspaceRunnable with appropriate scheduling

rule to prevent another thread from creating/deleting the

resource after the IResource.exists() check is performed.”

In Mozilla, bug #2883577 related to the interaction of

expression field access (“− >”) and method invocations (i.e,,

expr..field:call, HR=0.77, longer survival time than others)

likely introduced on 2004-03-03, for which a first patch was

submitted on 2005-05-20, with the following comment: “Yeah.

I’m not sure if I should check it in. It’s a bit risky, fixes a bug

that won’t come up much at all, and isn’t really the right way

to do absolute positioning in columns.”. The concern in the

comment was actually right, as after almost another year, on

2006-04-17, the following comment (with patch) was posted

on Bugzilla: “This patch is a better fix. It forces the abs-pos

container to always be the first in flow, making block and

inline containers consistent. The block code currently doesn’t

move abs-pos children across block continuations so they just

stay there in the first-in-flow and everyone’s happy”, and three

days after the change was finally committed.

In OpenLDAP, bug #34998 was likely introduced 2004-

07-19 and then fixed on 2005-01-20, by modifying declara-

tions, control statements, field and bit expressions. For such

a system, the interactions expr..field:decl and expr..bit:ctrl

(HR=0.56) exhibit a HR of 0.35 and 0.56 respectively, indi-

cating a survival time longer than other bugs. The commit

note posted by ando said: “the attribute mapping features

of rwm seem to be very broken. Here few issues related to

ITS#3499 are fixed but there’s some work to do yet”. Basically,

developers were fixing problems only partially solved in the

past, thus the bug remained in the system for a long time.

In Vuze, there was a case in which the bug was introduced

on 2008-02-12, and fixed only 24 hours after, because devel-

opers found that the code did not work in a particular environ-

ment for which it was targeted. The bug concerned arithmetic

expressions and qualifiers (HR=2.46, i.e., shorter survival time

than others), and the commit note by khai m nguyen says

“Remove the use of Constants. URL PREFIX NO PORT for

the LightBoxBrowserWindow because it doesn’t work on dev

environment when the server is local and set to 8080. The bug

that URL PREFIX NO PORT was meant to fix will now have

to be fixed in the AJAX instead”.

VI. THREATS TO VALIDITY

This section discusses the main threats to the validity of our

study.

Construct validity threats concern the relationship between

theory and observation. Such threats are mainly related to the

reliability of the measurements on which our study is based

on. The first assumption is on the bug survival time. The

approach we adopted is inspired to the work of Kim et al.

[2], [3] (relying on CVS annotations and other heuristics),

can only provide a set of bug introducing changes, and only

7https://bugzilla.mozilla.org/show bug.cgi?id=288357
8http://www.openldap.org/its/index.cgi/Archive.Software%20Bugs?

id=3499;selectid=3499;usearchives=1;statetype=-1

relies on the fact that a line changed in a bug fixing was last

modified in a given file revision. CVS does not tell whether

the bug fixing changed a code construct actually introduced

in that revision. Also, since a fixing originates in more bug

introducing changes—i.e., each line modified in the fixing

could have been last modified in a different file revision—

we choose the time and date of the most recent among these

changes as the bug-introducing timestamp. The other source

of imprecision is related to the token-based approach for

capturing changed code constructs by analyzing the source

code file before and after the bug fixing. Although we have

manually analyzed a set of changes to check the correctness

of the changed code construct extraction, we cannot exclude

imprecisions in our data set.

Conclusion validity concerns the relationship between the

treatment and the outcome. First, we have chosen a survival

model (Cox proportional hazard model) that does not require

a fitting with any specific distribution. Also, we discuss the

effect of each fixed code construct, taking into account its

statistical significance in the overall model comprising all

code constructs selected using the AIC procedure. Other that

considering the statistical significance of each construct, we

report and discuss an effect size measure, i.e., the HR: this is

even more important than reporting statistical significance, as

the HR shows whether the construct has an effect towards a

survival time longer or shorter than other bugs.

Threats to internal validity concern factors that can influ-

ence our observations. We observe a relation between the

survival time and a factor that could be one of its symptoms,

i.e., the code constructs being fixed. However, this cannot

lead us to claim any cause-effect relationship. As said in the

introduction, there are other—sometimes more important—

factors that can affect the bug survival time, e.g., the impact

such a bug has on system behavior, how frequently does

the bug manifests itself, etc. Nevertheless, we provide some

qualitative explanation supporting the fact that the investigated

code constructs can, at least, play a role together with other

factors. It should also be clear that what we observe is the

time between the bug introduction and its fixing, while we do

not observe the discussion length in the bug tracking system.

This is out of scope of this paper and will be investigated in

future work.

Threats to external validity concern the generalization of

our findings. Although we performed our analyses on four

different systems, belonging to different domains and devel-

oped with different programming languages, we are aware that

a further empirical validation on a larger set of systems would

be beneficial to better support our findings. Also, the code

constructs we considered are only a limited set of symptoms

for bugs with a long or short survival time. Further studies

need to consider other variables related to source code—e.g.,

code complexity, data flow-related features—as well as to

human factors.

VII. RELATED WORK

As mentioned in the introduction, Kim et al. [10], [2]

propose an approach to identify bug-introducing changes. The

approach relies on CVS annotations and on other heuristics,

such as focusing on annotations related to code lines and

not comments or blank lines, to reduce the number of false

positives. Then Kim et al. [3], relying on the bug-introducing

change detection approach, use machine learning techniques

such as Support Vector Machines (SVM) to predict when

a change was likely introducing bugs. In their model, the

independent variables are a series of code constructs involved

by bug-introducing changes, and the dependent variable is

a software artifact (e.g., a class) fault-proneness. While we

share with them the usage of the approach to identify bug-

introducing changes and the extraction of source code change

features, we try to correlate changes to the bug survival rather

than to the bug occurrence. That is, we believe that our

approach is complementary to what Kim et al. proposed, i.e.,

once predicted that an artifact could be buggy, it could be

useful to understand how long would the bug survive in the

system.

Weiss et al. [11] propose an approach aimed at predicting

the time needed by developers to fix a bug once the bug report

has been opened. The approach is based on the textual analysis

of bug reports and on the usage of K-Nearest Neighbor (KNN)

clustering to find similar bugs and use their fixing time for

prediction purposes. While we share with them the effort

toward analyzing the bug fixing time, in our case (i) we

analyze the bug survival since its introduction rather than since

its opening on the bug-tracking system, and (ii) we rely on

code change features rather than on bug report text.

To the best of our knowledge, the only (preliminary) study

aimed at analyzing the time to fix a bug since its introduction

was performed by Kim et al. [12], who report the distribution

of bug-fixing times for ArgoUML and PostgreSQL, as well as

information about the top bug-fixing times.

The Cox proportional hazard model has been used by

Wendel et al. [13] to study the occurrence of bugs in Eclipse;

while we share with them the use of the same survival model,

our intent is different as we aim at modeling the bug survival

time rather than the bug occurrence.

Other related studies deal with defect prediction and preven-

tion. Mockus et. al. [14] use a fine-grained analysis to predict

defect correction effort and the time-interval for which such

an effort is needed. Several researchers analyze the statistical

distribution of the bug occurrence in a software system [15],

[16], [17], finding that Weibull and exponential distributions

capture defect-occurrence behavior across a wide range of

systems. Calzolari et al. [18] use the predator prey model bor-

rowed from ecological dynamic system to model maintenance

and testing effort. They find that, when programmers start to

correct code defects, the effort spent to find new defects has

an initial increase, followed by a decrease when almost all

defects are removed.

Kim and Ernst [19] propose an algorithm to prioritize the

fixing of warnings detected by tools such as FindBugs, Jlint

and PMD. They focus on warnings removed by bug-fixing

directly affecting source code lines containing the warning

itself. They find that this represents a very small percentage of

warning/vulnerability removal. Di Penta et al. [20] investigate

the decay of statically detected (using tools such as Splint,

Rats, or Pixy) vulnerabilities in three networking systems,

Samba, Squid, and Horde. They found that vulnerability

decay follows Weibull or exponential distributions, and that

some vulnerabilities more important for the particular kind of

application—e.g., command injections for Web-based systems,

or buffer-overflows for other networking applications—tend to

be removed before others. As for warnings and vulnerabilities,

bug survival can be modeled by proper distributions; however,

we found that parametric models based on Weibull or expo-

nential distributions are not appropriate, while our results show

the applicability of the Cox proportional hazard model.

VIII. CONCLUSION AND WORK-IN-PROGRESS

This paper reported a study, aimed at characterizing bug

survival time—since their introduction until their removal—

with respect to source code constructs introduced during bug-

fixing. The study has been conducted on a sample of bugs

extracted from four open source systems, Eclipse, Mozilla,

OpenLDAP and Vuze. We modeled—using the Cox propor-

tional hazard model—the relation between the bug survival

time and a series of independent variables, i.e., changed code

constructs and their interaction. Then, we identified constructs

and their interactions exhibiting an hazard ratio (HR) higher

(or lower) than one. Bugs concerning such constructs would

have a lower (higher) survival time than the average. We also

performed an assessment to understand to what extent could

survival models be used to predict the likelihood that a bug

survives for more than a given time frame.

Results indicate that there are constructs, and above all,

interactions between specific constructs, that are significantly

correlated with the survival time and lead to HR higher (lower)

than one when the constructs are involved alone in a bug

fix, while lead to HR lower (higher) than one when involved

together. Specifically, we found examples of constructs—e.g.,

exception handling constructs—that alone correlate with a low

survival time, while if changed together with other constructs

(such as control-flow statements) correlate with high survival

times, as the change could be less obvious to be performed,

or the bug might manifest itself only under certain conditions.

Findings reported in this paper can be useful to understand

what kinds of code constructs can be related to bugs that

will remain in the system for a long time, thus suggesting

developers to better inspect or test the source code containing

such constructs, as well as to the quality control team to better

verify patches before these will be committed in the system.

There are several directions for future work. First, we plan

to use a more sophisticated source code analysis to identify

changes in code constructs—not considered in this study, e.g.,

constructs related to the program data-flow or complexity—

that, we suppose, can well describe a bug survival. Also, we

plan to investigate the effect of other factors—e.g. human

factors—on bug survival time. Last, but not least, we plan to

extend the empirical study on a larger set of bugs and systems.

REFERENCES

[1] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” IEEE

Trans. Software Eng., vol. 31, no. 10, pp. 897–910, 2005.
[2] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead, “Automatic iden-

tification of bug-introducing changes,” in 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2006), 18-22 Sept.

2006, Tokyo, Japan. IEEE CS, 2006, pp. 81–90.
[3] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software changes:

Clean or buggy?” IEEE Trans. Software Eng., vol. 34, no. 2, pp. 181–
196, 2008.

[4] D. Cox, “Regression models and life-table,” Journal of Royal Statistical

Society, vol. 34, pp. 187–220, 1972.
[5] E. Kaplan and P. Meier, “Nonparametric estimation from incomplete

observations,” Journal of the American Statistical Association, vol. 53,
no. 282, pp. 457–481, 1958.

[6] D. Kleinbaum and M. Klein, Survival Analysis: A Self-Learning Text.
Springer, 1997.

[7] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in ICSE ’04: Proceedings of the
26th International Conference on Software Engineering, 2004, pp. 563–
572.

[8] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in 19th
International Conference on Software Maintenance (ICSM 2003), 22-

26 September 2003, Amsterdam, The Netherlands, 2003, pp. 23–.
[9] H. Akaike, “A new look at the statistical model identification,” Automatic

Control, IEEE Transactions on, vol. 19, no. 6, pp. 716 – 723, Dec. 1974.
[10] S. Kim and E. J. Whitehead, “How long did it take to fix bugs?” in

Proceedings of the 2006 International Workshop on Mining Software

Repositories, MSR 2006, Shanghai, China, May 22-23, 2006. ACM,
2006, pp. 173–174.

[11] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proceedings of the Fourth International
Workshop on Mining Software Repositories (MSR ’07). IEEE CS, 2007,
p. #1.

[12] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”
in Proceedings of the 2006 international workshop on Mining software
repositories (MSR ’06). ACM, 2006, pp. 173–174.

[13] M. Wedel, U. Jensen, and P. Göhner, “Mining software code repositories
and bug databases using survival analysis models,” in Proceedings of
the Second ACM-IEEE international symposium on Empirical software

engineering and measurement (ESEM ’08). ACM, 2008, pp. 282–284.
[14] A. Mockus, D. M. Weiss, and P. Zhang, “Understanding and predicting

effort in software projects,” in ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering. Washington, DC,
USA: IEEE CS, 2003, pp. 274–284.

[15] W. Jones, “Reliability models for very large software systems in indus-
try,” in International Symposium on Software Reliability Engineering,
1991, pp. 35–42.

[16] P. Luo Li, M. Shaw, J. D. Herbsleb, B. K. Ray, and P. Santhanam,
“Empirical evaluation of defect projection models for widely-deployed
production software systems,” in Proceedings of the 12th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, 2004,

Newport Beach, CA, USA, October 31 - November 6, 2004. ACM, 2004,
pp. 263–272.

[17] A. Wood, “Predicting software reliability,” IEEE Computer, vol. 9, pp.
69–77, 1999.

[18] F. Calzolari, P. Tonella, and G. Antoniol, “Maintenance and testing
effort modeled by linear and nonlinear dynamic systems,” Information

& Software Technology, vol. 43, no. 8, pp. 477–486, 2001.
[19] S. Kim and M. D. Ernst, “Which warnings should I fix first?” in

Proceedings of the 6th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 2007, Dubrovnik, Croatia,

September 3-7, 2007, 2007, pp. 45–54.
[20] M. Di Penta, L. Cerulo, and L. Aversano, “The life and death of statically

detected vulnerabilities: An empirical study,” Information & Software

Technology, vol. 51, no. 10, pp. 1469–1484, 2009.

