
Mobile Malware Detection in the Real World

Francesco Mercaldo1, Corrado Aaron Visaggio1, Gerardo Canfora1, Aniello Cimitile1

1Department of Engineering, University of Sannio, Italy
{fmercaldo, visaggio, canfora, cimitile}@unisannio.it

ABSTRACT
Several works in literature address the mobile malware de-
tection problem by classifying features obtained from real
world application and using well-known machine-learning
techniques. Several authors have published empirical studies
aimed at assessing the quality of set of features. In this paper
we propose BehaveYourself!, an Android application able to
discriminate a trusted application by a malicious one ex-
tracting opcode-based features. Our application is open and
flexible: it can be used as a starting point to define, and ex-
periment with, additional features. We release BehaveYour-
self! to the research community at the following url: http:

//www.ing.unisannio.it/cimitile/BehaveYourself.apk

1. INTRODUCTION AND BACKGROUND
Smartphones are becoming more and more pervasive in

everyday activities [1–4]. Current solutions to protect users
from new threats in mobile platform are still inadequate
[5–7]: the main problem is that a threat must be widespread
for being successfully recognized.

The literature provides several empirical studies to detect
Android malware [8,9]: results are encouraging, but authors
do not deploy their solutions on a real-world mobile environ-
ment. In this way end users can not evaluate the proposed
solution on their devices.

Researchers in [10] developed Andrubis, an analysis sys-
tem for Android applications. They release also a mobile
app able to communicate with the main server to receive
the analysis results. Andrubis executes the application in
a virtual environment, making the adopted solution slow in
terms of responsiveness. Androguard [11] is a Python tool
able to compare an application with a malware database us-
ing clustering and similarity distance. It does not provide
a mobile app to check the installed applications on device
against the signature database.

While the importance of the empirical studies related to
mobile malware detection using machine learning techniques
has been addressed by the research community, the resulting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

prototypes remain limited in terms of analysis capabilities
and availability.

In this paper we propose BehaveYourself!, an application
for Android environment able to detect the maliciousness of
an application at installation time: our prototype, at the
best of authors knowledge, represents the first example of
Android antimalware features-based fully deployed as An-
droid application. The effectiveness of the features involved
are evaluated in two empirical studies [9, 12].

BehaveYourself! collects structural code metrics that may
be indicators of malware, and the obtained values are com-
pared with metrics resulting from a baseline computed from
all the samples analyzed and stored into a central repos-
itory, while antimalware does not provide structural mea-
surements to the user, but just a boolean evaluation.

2. APPROACH
In this section we describe the BehaveYourself! approach.

Our prototype analyzes op-codes [13] which are usually used
to change the application’s control flow, since these op-codes
can be indicators of the application’s complexity. The un-
derlying assumption is that the business logic of a trusted
application tends to be more complex than malware one, be-
cause the trusted application code must implement a certain
set of functions. On the contrary, the malware application
is required to implement just the functions that activate the
malicious behaviour.

Specifically, we consider 6 op-codes: (i) Move (M): which
moves the content of one register into another one; (ii) Jump
(J): which deviates the control flow to a new instruction
based on the value in a specific register; (iii) Packed-Switch
(P): which represents a switch statement. The instruction
uses an index table; (iv) Sparse-Switch (S): which imple-
ments a switch statement with sparse case table, the differ-
ence with the previous switch is that it uses a lookup table;
(v) Invoke (K): which is used to invoke a method, it may
accept one or more parameters; and (vi) If (I): which is a
Jump conditioned by the verification of a truth predicate.

We computed six features as follows, a feature represents
a candidate metric to detect Android malware. Let F be one
of the six features extracted, let X be one of the occurrences
of the six extracted op-codes (i.e., M,J,P,S,K and I) from
the i-th class of the application.

Then we count the occurrences of each of these op-codes
in each class, and compute the features as follows:

Fx =
∑N

i=1 Xi∑N
i=1(Mi+Ji+Pi+Si+Ki+Ii)

where: (i) at the numerator Xi denotes the occurrences

of a given op-code in a class of the app, the sum spans
over all the application classes; (ii) at the denominator we
sum the occurrences of all the considered op-codes over the
application classes.

3. IMPLEMENTATION
The BehaveYourself! daemon starts when the applica-

tion is installed and it restarts automatically when device is
booted.

Basically BehaveYourself! analysis consists of five steps,
as Figure 1 explains:

Figure 1: the BehaveYourself! evaluation process.

The application requires the declaration of the android.-
intent.action.PACKAGE ADDED intent filter in the Mani-
fest.xml file, in order to be able to receive a broadcast (Step
1) when an application is installed.

The dalvik disassembler is able to extract from the dalvik
executable file the smali classes (Step 2). Regarding the
dalvik disassembler implementation, we use the smali/bak-
smali [14] library. This library is an assembler/ disassembler
for the dex format used by dalvik, the Android’s Java VM
implementation.

In order to make available the smali/baksmali library in
Android environment must be recompiled the Java VM ver-
sion of the library. To convert Java class files into a .dex
(Dalvik Executable) file we invoke the dx [15] compiler, a
tool available from the Android SDK [16]. We recompiled
the library for the Android platform using the dx [15] com-
piler.

Using the following command: dx –dex –output=<output-
file> <input-file> we build the .jar file of smali/baksmali
library (i.e. <input-file>) into the corresponding .dex file
(i.e., <output-file>) optimized for running on Dalvik VM.

The obtained decompiler is invoked using the dalvikvm -
classpath dexPath/bak.dex org.jf.baksmali. main /app.apk -o
/outDir command, where -classpath dexPath/bak.dex identi-
fies the path where the decompiler is stored, org.jf.baksmali.
main represents the main class of decompiler, app.apk is
the application under testing, and finally with -o outDir it
is identified the folder to store the disassembled smali files.

The decompiler is downloaded at run-time from the Be-
haveYourself! asset folder.

The features extractor module is able to compute the fea-
ture values. It is based on the mobile porting of Lucene [17],
an information retrieval library (Step 3). We use the class
NGramTokenizer to extract the N-gram with N equal to 1,
i.e. the opcode occurrency.

The testing module is able to check if the computed fea-
tures are coherent with respect to learned model (Step 4).

The feature testing is accomplished using the mobile port-
ing of Weka library [18], a popular suite of machine learning
software Java-based. The model is built with the J48 algo-
rithm using the 10-fold cross validation.

Finally, to notify the user (Step 5) about the malicious-
ness or the trustiness of the analysed application we use
the NotificationManager provided by android.app Android
package.

From the application interface it is possible to visualize
details about the feature occurrences on the last samples
analyzed (Fig. 2).

Figure 2: Features histogram resulting from an analyzed applica-
tion.

BehaveYourself! does not require the device root, but it
requires to set the chmod 777 permission to dalvik-cache
folder.

We tested BehaveYourself! on the Android emulator (4.1.2
version), using the Galaxy Nexus configuration on a machine
equipped with Linux Mint 15.

4. EVALUATION
The evaluation dataset includes 5,560 Android trusted

applications and 5,560 Android malware applications, the
trusted samples were retrieved from Google Play [19], while
the malicious ones from the Drebin Project [20,21].

The features produced a precision equal to 0.949 in mal-
ware identification, where the precision is the ratio of the
number of relevant records retrieved to the total number
of irrelevant and relevant records retrieved. We also test
malware dataset using Androguard and Andrubis tools, ob-
taining respectively a precision equal to 0.22 and 0.98 [22].
We recall here that Androguard performs a static analysis,
while Andrubis analyses at runtime the samples, i.e. per-
forms a dynamic analysis. Androguard does not provide
an interface for mobile devices, while Andrubis can not be
implemented as real time antimalware on mobile device be-
cause it performs a dynamic analysis on a sandbox. Results
are coherent with ones obtained in [9, 12,22].

5. CONCLUSIONS
As previous empirical studies demonstrate [9, 12] mobile

malware detection using op-code frequency features could
be a successful solution to recognize malware.

In this paper we propose BehaveYourself!, an Android an-
timalware able to catch an application at installation time
which uses op-codes frequency as discriminating factor be-
tween trusted and malware applications.

6. REFERENCES
[1] “The global adoption and diffusion of mobile phones.”

http://pirp.harvard.edu/pubs_pdf/kalba/kalba-p08-1.pdf,
last visit 13 December 2015.

[2] M. L. Bernardi and M. Cimitile, “Model driven
development of cross-platform mobile applications,” in
The 11th IASTED International Conference on Software

Engineering (SE 2012), 2012.

[3] M. Cimitile, M. Risi, and G. Tortora, “Automatic
generation of multi platform web map mobile
applications.,” in DMS, pp. 84–89, 2011.

[4] H. Jaakkola, M. Gabbouj, and Y. Neuvo,
“Fundamentals of technology diffusion and mobile
phone case study,” Circuits, Systems and Signal

Processing, vol. 17, no. 3, pp. 421–448, 1998.

[5] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon:
evaluating android anti-malware against
transformation attacks,” in Proceedings of the 8th ACM

SIGSAC symposium on Information, computer and

communications security, pp. 329–334, ACM, 2013.

[6] K. Sharma, T. Dand, T. Oh, and W. Stackpole,
“Malware analysis for android operating,” in 8th Annual

Symposium on Information Assurance (ASIAâĂŹ13),
vol. 31, 2013.

[7] G. Canfora, A. Di Sorbo, F. Mercaldo, and C. A.
Visaggio, “Obfuscation techniques against
signature-based detection: a case study,” in Proceedings

of 1st Workshop on Mobile System Technologies (MST),

May 22, 2015, Milano, Italy, p. To appear, May 2015.

[8] G. Canfora, F. Mercaldo, and C. A. Visaggio, “A
classifier of malicious android applications,” in
Availability, Reliability and Security (ARES), 2013 Eighth

International Conference on, pp. 607–614, IEEE, 2013.

[9] G. Canfora, F. Mercaldo, and C. A. Visaggio, “Mobile
malware detection using op-code frequency
histograms,” International Conference on Security, and

Cryptography (SECRYPT), 2015.

[10] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer,
“Andrubis-1,000,000 apps later: A view on current
android malware behaviors,” in Proceedings of the the 3rd

International Workshop on Building Analysis Datasets and

Gathering Experience Returns for Security (BADGERS),
2014.

[11] “Androguard.” https://github.com/androguard/androguard,
last visit 3 December 2015.

[12] G. Canfora, F. Mercaldo, and C. A. Visaggio,
“Evaluating op-code frequency histograms in malware
and third-party mobile applications,” Lecture Notes in

Computer Science, Springer, 2015.

[13] “Dalvik opcodes.”
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html.

[14] “smali/baksmali.” https://github.com/JesusFreke/smali,
last visit 3 December 2015.

[15] “Tools help android developers.”
http://developer.android.com/tools/help/index.html, last
visit 3 December 2015.

[16] “Installing the android sdk.”
http://developer.android.com/sdk/installing/index.html, last
visit 3 December 2015.

[17] “Apache lucene.” https://lucene.apache.org/core/, last
visit 3 December 2015.

[18] “Weka 3.” http://www.cs.waikato.ac.nz/ml/weka/, last visit
3 December 2015.

[19] “Google play.” https://play.google.com/store, last visit 3
December 2015.

[20] M. Spreitzenbarth, F. Echtler, T. Schrek, F. C.
Freiling, and J. Hoffman, “Mobilesandbox: looking
deeper into android applications,” in Proc. the 28th

ACM Symposium on Applied Computing (SAC), 2013.

[21] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon,
and K. Rieck, “Drebin: Efficient and explainable
detection of android malware in your pocket,” in Proc.

of 17th Network and Distributed System Security

Symposium, NDSS, vol. 14.

[22] F. Mercaldo, C. A. Visagggio, A. Oropallo, and
P. Pirone, “Evaluating the commercial and research
antimalware tools against malware in the wild and
third-party markets: A technical report.” https://www.

researchgate.net/publication/275334543_Evaluating_the_

commercial_and_research_antimalware_tools_against_malware_

in_the_wild_and_third-party_markets_A_technical_report, last
visit 9 January 2016.

