
Summarizing Vulnerabilities’ Descriptions
to Support Experts during Vulnerability Assessment Activities

Ernesto Rosario Russoa,c, Andrea Di Sorbob, Corrado A. Visaggiob, Gerardo Canforab

aDepartment of Informatics, University of Bari Aldo Moro, Italy
bDepartment of Engineering, University of Sannio, Italy

cExprivia S.p.A., Sede Legale Via A. Olivetti 11, 70056 Molfetta (BA) - Italy

Abstract

Vulnerabilities affecting software and systems have to be promptly fixed, to prevent violations to integrity, availability and con-
fidentiality policies of targeted organizations. Once a vulnerability is discovered, it is published on the Common Vulnerabilities
and Exposures (CVE) database, freely available on the web. However, vulnerabilities are described using natural language, which
makes them hard to be automatically interpreted by machines. As a consequence, vulnerability assessment activities tend to be
time-consuming and imprecise, as the assessors must manually read the majority of the vulnerabilities concerning the perimeter to
be protected, to make a decision on which vulnerabilities have the highest priority for patching. In this paper we present CVErizer,
an approach able to automatically generate summaries of daily posted vulnerabilities and categorize them according to a taxon-
omy modeled for industry. We empirically assess the classification capabilities of the approach on a set of 3369 pre-labeled CVE
records and perform an end-to-end evaluation of CVErizer summaries involving 15 cybersecurity master students and 4 professional
security experts. Our study demonstrates the high performance of the proposed approach in correctly extracting and classifying
information from CVE descriptions. Summaries are also considered highly useful for helping analysts during the vulnerability
assessment processes.
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1. Introduction

In the context of Information Technology, the term ”vulnera-
bility” indicates a defect that can allow the violation of a secu-
rity policy in a system. According to the definition provided by
the MITRE corporation, a vulnerability is “a mistake in soft-
ware that can be directly used by a hacker to gain access to a
system or network” [1]. Thus, a vulnerability could allow an
attacker to: execute arbitrary commands, obtain open access to
private data, impersonate any other user, throw a DoS attack
[2], or any other action which can violate privacy and security
policies and subvert the related controls. For example, recent
infamous ransomware WannaCry1 and NotPetya2 both exploit
the Microsoft Windows SMB Server Remote Code Execution
Vulnerability (CVE-2017-0145).

Consequently, it is important to timely apply the latest secu-
rity patch to an operating system, a web server, or any kind
of software layer, to mitigate the risk for a system of being
exposed to potential attacks. Indeed, the presence of vulner-
abilities is the main cause of security attacks [3]. In addition,
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docid=2017-051310-3522-99
2https://www.us-cert.gov/ncas/alerts/TA17-181A

modern software systems often rely on third-party libraries to
provide specific functionalities. Such libraries are in constant
evolution: newer versions with fixed defects, patched vulnera-
bilities, and enhanced features, are progressively released. Ob-
viously, the immediate migration (e.g., update to a newer ver-
sion) of a vulnerable dependency is strongly recommended to
avoid the exposure of the dependent application to malicious at-
tacks. However, a recent study [4] demonstrated that updates of
third-party library dependencies are not regularly practiced by
developers (especially to fix vulnerabilities), since they are of-
ten unaware of vulnerable dependencies, highlighting the need
of strategies aimed at improving developers personal perception
of third-party security updates.

In this context, “Common Vulnerabilities and Exposures”
(CVE)3 is an industry standard of common names for pub-
licly known information security vulnerabilities, and has been
widely adopted by organizations to provide easier interoperabil-
ity and better security coverage. More specifically, CVE is a
list of information security vulnerabilities and exposures that
aims to provide common names for publicly known problems.
The use of CVE identifiers ensures confidence among parties
when they have to discuss or share information about a unique
software or firmware vulnerability. In general, when a new vul-
nerability is discovered and patched, it is posted on the CVE
database.

3https://cve.mitre.org/
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A common problem with CVE resides in its syntactic de-
scription format. Since CVE descriptions are written in natu-
ral language text, they are hard to be automatically interpreted
by machines. Moreover, different organizations may perceive
the severity of a particular vulnerability differently, and, conse-
quently, they may also prioritize its mitigation differently [5].
Thus, security teams are required to:

1. Constantly monitor CVE databases.

2. Read CVE descriptions to acquire semantic information
about the vulnerabilities (e.g., which product would be af-
fected by the vulnerability, what kind of damage the vul-
nerability would generate, which is the attack vector) [6]

3. Evaluate the risks derived from each specific vulnerability.

4. Perform software maintenance operations to minimize
these risks [7].

As discussed by Guo and Wang in [6], CVE descriptions
present a quite regular syntax. In our work, we are interested
in exploiting this regularity of vulnerability descriptions, for al-
lowing companies to automatically collect the relevant informa-
tion that will be used by analysts to make decisions about vul-
nerability prioritization and mitigation. Pragmatically speak-
ing, our work is aimed at automating the step 2 of the process
discussed above.

Every year, thousands of vulnerabilities are discovered.
Companies’ security teams need to check their own environ-
ment against the vulnerabilities daily reported, and prioritize
mitigation of such vulnerabilities on the basis of the associated
risk. However, when curating vulnerability information is not
a main line of business, companies prefer to find trusted soft-
ware vulnerability management partners whose function is to
perform this work [8]. State-of-the-art tools used by vulnera-
bility assessors, as asset inventories and vulnerability scanners,
currently associate all the CVEs to the software they affect [9].
The main limitation of these tools is that they do not provide
any semantic information about such vulnerabilities (e.g., the
origin of a vulnerability and the undesired effects which it may
produce on the system). Without manually analysing the de-
scription of each collected vulnerability, it is not possible to
know which of these vulnerabilities allows for a specific kind
of attack, leverages a specific attack vector, causes a specific
damage.

This has a direct impact on the costs and the efficacy of the
vulnerability assessment.

Paper contributions. In this paper we present an approach
and a tool, called CVErizer, able to automatically extract
semantic information from natural language descriptions of
CVEs. Since our goal is to allow companies to timely react to
recently published CVEs, we decided to focus on CVE descrip-
tions, as they would be the only data available that security ex-
perts would likely analyze at the time of a CVE publication. On
the other hand, when the information from other sources (e.g.,
CVSS) is available, CVE summaries could provide orthogonal
details (e.g., effects and causes) to the ones available from other

sources. Indeed, as reported by the NVD website4, CVE en-
tries are updated several times and CVSS, CPE or CWE data
are added during the vulnerability life-cycle. For this reason,
when first published, the CVE only comprises the identifier, the
description, some references (i.e., list of URLs and other in-
formation, such as vendor advisory numbers) and the date the
entry was created.

In particular, our approach is able to mine the following in-
formation: (i) the software affected by the vulnerability, (ii)
the specific versions of the software interested, (iii) the type
of attacker which could exploit the vulnerability (e.g., remote
or local attacker), (iv) the origin of the vulnerability (e.g., an
unchecked POST request), (v) the consequences (e.g., obtain
sensitive information), and (vi) the specific category of the vul-
nerability according to a taxonomy modeled for industry (de-
tailed in Table 3).

Categorization of vulnerabilities is a precondition for in
depth vulnerability analysis [10] and, recently, some re-
searchers have made preliminary exploration on automatic vul-
nerabilities categorization [11, 12, 13, 14, 15]. Differently from
these previous works, which are mainly aimed at developing
taxonomies or approaches with the explicit purposes of pre-
cisely categorizing and assigning a severity score to each item
in the context of a vulnerability database, our approach is more
industry oriented, since its goal is to (i) automatically analyze
daily published CVEs and (ii) present the extracted informa-
tion in the form of CVE summaries to the security teams, in
order to (iii) minimize their reaction time and (iv) allow de-
velopers fixing critical exposures in the shortest possible time.
Indeed, the criticality of a vulnerability is based on the assess-
ment of the (i) vulnerability’s potential impact on a system, (ii)
the attack vector, (iii) mitigating factors, and (iv) whether an ex-
ploit exists for the vulnerability and is being actively exploited,
prior to the release of a patch [8]. CVErizer, through Natural
Language Processing abilities, aims to summarize these kinds
of information for daily reported vulnerabilities, to help secu-
rity teams and vulnerability assessors prioritizing security is-
sues. Since different companies could assign a different patch-
ing priority to a specific vulnerability, according to the diverse
companies’ strategies, rather then designing a fine-grained list
of categories of vulnerabilities and discussing which categories
have to be prior patched, the present work is mainly aimed at
proposing a technique for automatically extracting information
that could support security experts in deciding such priorities by
their own. For instance, security engineers would be interested
at first remedying to remotely exploitable vulnerabilities rather
than locally exploitable ones, or vulnerability assessors could
be more concerned about vulnerabilities of a specific class (e.g.,
SQL Injection). With summaries provided by CVErizer, these
(and similar) kinds of information would be at their fingertips,
minimizing the time that would be otherwise spent in mining
these data from the collected CVEs. Our approach is highly ex-
tensible, since it provides an easy way to retrieve further infor-
mation by simply adding extraction rules in a xml file. Closing

4https://nvd.nist.gov/vuln
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Figure 1: CVErizer output example

up, the approach we propose generates extractive summaries
of CVEs, not available in the current systems collecting CVEs.
CVErizer identifies within a CVE description (written in natu-
ral and unstructured text), relevant pieces of information, struc-
ture them in a format that allows a wider spectrum of search
and analysis than a natural text description allows. The goal
of CVERizer is to produce extractive summaries of available
CVEs, i.e. published on official CVE’s repositories, while it
does not deal with the problem of CVE’s disclosure which is
delayed by companies. An example application for CVErizer
is in the field of risk evaluation. Risk assessment requires to
define the impact of each vulnerability found within a system.
This evaluation must be done manually by the assessor who has
to read the complete list of CVEs affecting the system. CVEr-
izer could allow to semi-automatically compute the risk, once
the list of CVEs is built, if each kind of effects in the CVErizer
summary is associated to an impact level through a risk model.
Indeed, previous research [16] demonstrated that common risk
models, as the CVSS base metric, are not enough to assess the
impact of the vulnerability. Moreover, the CVSS score calcula-
tion can be somewhat subjective and two users may be having
different CVSS scores for the same vulnerability [17].

We assessed the tool’s classification capabilities on a set of
3369 CVE records manually classified by industrial subjects,
according to a taxonomy of vulnerabilities categories modeled
for Cybaze S.p.A.5. Moreover, an end-to-end evaluation of the
CVErizer’s summaries has been conducted involving 15 mas-
ter’s students of a software security academic course at Univer-
sity of Molise6 and 4 professional security experts employed at
Cybaze. The results of the evaluation demonstrate (i) the high
accuracy of the tool in classifying vulnerabilities, as well as (ii)
the high performance in correctly extracting relevant informa-
tion that could help security analysts improving the risk assess-

5https://cybaze.it/
6http://dipbioter.unimol.it/english/degree-programmes/

second-cycle-degree/master-in-software-system-security/

ment process (i.e., having automatically extracted information,
analysts can take decisions in less time). In addition, study par-
ticipants considered summaries generated through CVErizer

(i) useful for supporting security experts during vulnerability
assessment processes, (ii) easy to read and understand, and (iii)
providing the right amount of information to comprehend vul-
nerabilities. Finally, we discuss the results of an industrial eval-
uation of CVErizer’s capabilities when used to automatically
extract salient information from vulnerabilities affecting two
competing hypervisor products.

We make publicly available a replication package7 with (i)
results achieved through the different classification algorithms
(due to non-disclosure-agreement with our industrial partner,
we are unauthorized to share raw data concerning this part), (ii)
complete results and raw data concerning our controlled exper-
iment (see Section 3.2), and (iii) the prototypical implementa-
tion of CVErizer.

Paper structure: Section 2 presents the approach and tech-
niques we used. Section 3 reports the dataset and the evaluation
methods we employed. Section 4 presents and discusses the re-
sults of the study. Section 5 reports the results of an industrial
case study in which our tool has been used to assess vulnera-
bilities affecting hypervisors’ systems. Section 6 deals with the
threats that could affect the validity of our work. Section 7 il-
lustrates the related literature and Section 8 concludes the paper
outlining future research directions.

2. Approach

To provide support to security assessment activities, we pro-
pose a lightweight and extensible approach for summarizing
CVE’s content, which is mainly composed by two steps: (i)
information extraction, and (ii) classification of vulnerabilities.

7https://github.com/jssrp2018/CVErizer
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In particular, our approach aims at automatically mining use-
ful information from texts contained in vulnerabilities’ descrip-
tions. Indeed, although there are several resources (e.g., CPE8

or CWE9) that can be used for gaining different information
about vulnerabilities, significant amounts of key information
remain only in unstructured text [18].

In the following, we provide a detailed description of the
method. Figure 1 illustrates an example output of CVErizer.
Each row represents a different CVE, while in each column
the information types extracted by CVErizer from the origi-
nal plaintext of the CVE (detailed in Table 1) are shown. The
”Status” column indicates whether the CVE has been recently
modified or if it is a new added vulnerability. By clicking on
the Details button, users will be redirected to the National
Vulnerability Database webpage describing the specific vulner-
ability.

2.1. Information Extraction

Previous research [18] has shown that (i) the name of the
software affected by the vulnerability (i.e., Software name in
Table 1) , (ii) the versions of the Software affected by the vul-
nerability (i.e., Versions and Previous versions in Table 1), (iii)
the kind of attacker who could exploit the vulnerability (i.e.,
Attacker in Table 1), (iv) the attack mechanism used by an at-
tacker for causing the vulnerability to be exploited (i.e., Cause
in Table 1), (v) the consequences of the vulnerability (i.e., Effect
in Table 1) and the (vi) vulnerability name (which is available
only for some records) are some of the most relevant informa-
tion pieces usually contained in a CVE description.

Through a manual inspection of 130 common vulnerabili-
ties, we observed that their descriptions present some recurrent
linguistic patterns which could be exploited to automatically
recognize the aforementioned information. For instance, con-
sidering the following description:

”The ironic-api service in OpenStack Ironic before 4.2.5
(Liberty) and 5.x before 5.1.2 (Mitaka) allows remote attack-
ers to obtain sensitive information about a registered node by
leveraging knowledge of the MAC address of a network card
belonging to that node and sending a crafted POST request to
the v1/drivers/$DRIVER.NAME/vendor.passthruresource.”

We notice that the plain text matches the following structure:

”in [Software name] before [Version] and before [Previous
Version] allows [Attacker] to [Effect] by [Cause]”

Table 1 shows the relevant data related to each of the afore-
mentioned ”Information Classes” extracted from the example
description.

We argue that this (and other) recurrent structure(s) may
be exploited to automatically recognize the salient informa-
tion present in CVE descriptions. Specifically, to accomplish
this task, we leverage an approach previously adopted for the
recognition of text fragments useful for performing software
maintenance and evolution activities, within discussion among

8https://nvd.nist.gov/products/cpe
9https://cwe.mitre.org/

Table 1: Information in CVE descriptions.
Information Class Example

Software name in OpenStack Ironic before 4 2 5
Versions and 5 x before 5 1 2

Previous version before 5 1 2
Attacker allows remote attackers to
Cause by ... and sending a crafted POST request
Effect to obtain sensitive information about

developers [19, 20]. This approach is based on the identifica-
tion of Natural Language Patterns within sentences contained
in the target texts, leveraging the Stanford Typed Dependencies
(SD) representation [21] of these sentences. The SD parser is
able to represent the grammatical frame of a sentence as a list
of triples. Each triple describes the grammatical relation that
exists between two words: the governor and the dependent.

This technique, previously used in the context of developers’
discussions, has been profitably adapted to our needs. In par-
ticular, to support the process of NL patterns’ formulation and
make the information extraction task more flexible to further
improvements, we provided the ability to formalize the identi-
fied patterns within an XML file.

Figure 2: Stanford Typed Dependencies representation

Figure 2, shows the process applied to define each heuristic.
We first analyze a sentence containing one identified recurrent
pattern (e.g., “allow remote attackers to execute arbitrary code
via a crafted web site” in Figure 1) and build its SD represen-
tation. For instance, the example sentence shown in Figure 2
presents the following SD representation:

• ”execute” represents the clausal complement of the main
verb ”allow” (i.e., xcomp);

• ”code” is the direct object of the verb ”execute” (i.e.,
dobj);

• ”arbitrary” is an adjectival modifier of ”code” (i.e., amod);

• connected with ”code” we find a preposition introduced by
”via” (i.e., prep via).

Based on this representation we can formalize the heuristic
as shown in Listing 1. A similar formalism has been adopted for
defining heuristics aimed at identifying privacy leaks in social
network posts [22]. The definition of a NLP heuristic consists in
the definition of a rule able to recognize a particular path in the
Stanford Typed Dependencies tree of a generic sentence. For
example, the heuristic shown in Listing 1, aims to identify the
Effect information by capturing the pattern ”allow [someone]
to [do something] via...”.
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Table 2: Number of heuristics for each Information class

Information Class Heuristics
Software name 32

Versions 7
Previous version 5

Attacker 8
Cause 24
Effect 26

Vulnerability name 28
TOTAL 130

Listing 1: Example of a heuristic’s definition

<NLP_heuristic >
<type>xcomp/dobj/amod/prep_via </type>
<text>Effect: {xcomp.dependent }[1]{ amod.dependent }[3]{

amod.governor }[3]</text>
<conditions >

<condition >xcomp.governor="allow allows"</condition >
<condition >xcomp.dependent=dobj.governor </condition >
<condition >dobj.dependent=amod.governor </condition >
<condition >amod.governor=prep_via.governor </

condition >
</conditions >
<sentence_class >EFFECT </sentence_class >

</NLP_heuristic >

The "conditions" represent the core part of the heuristic
(i.e., they describe the path to be searched in the SD represen-
tation of the text composing the description). The "type" tag
is used to indicate the typed dependencies which have to be an-
alyzed, while the "text" tag is used to dynamically compose
the text to extract by specifying the term (grammar relation fol-
lowed by governor/dependent) and the row of the condition in-
volved. Finally the "sentence class" is used to discriminate
from the different Information Classes. The heuristic described
in Listing 1 extracts the text ”Effect: execute arbitrary code”
from the sentence shown in Figure 2 .

We defined a set of heuristics for each of the defined infor-
mation classes. Table 2 illustrates the number of heuristics
implemented for each class. More specifically, an author of
the paper used 130 vulnerability descriptions (not included in
the subsequent experiments) as input to identify common nat-
ural language patterns, and, consequently, heuristics aimed at
automatically extracting the required information through the
process illustrated above. The identification process terminated
when the set of defined heuristics succeed in correctly mining
the required information for all the 130 considered vulnerabil-
ities. On average, we defined for each Information Class 27
heuristics, with the exception of Version, Previous Version and
Attacker classes (for which we defined 7, 5 and 8 heuristics,
respectively).

Analyzing the SD representation of the CVE descriptions,
our approach exploits the defined heuristics to extract most of
the relevant information contained in such descriptions.

2.2. Classification of Vulnerabilities

As a result of a collaboration with Cybaze S.p.A., a renowned
cyber security company, we identified a lightweight taxonomy

for categorizing the different types of vulnerabilities. It is im-
portant to highlight that detailed categorization information for
many vulnerabilities is already accessible via further resources,
as CWE. However, CWE is a collection of weaknesses hav-
ing a highly tangled structure at various levels of abstraction
which is quite difficult to use for stakeholders in the software
development community [23]. For this reason, according to the
aim of providing a quick overview of vulnerabilities’ semantic-
related information, we designed a set of self-explained cate-
gories. The taxonomy comprises 10 categories, which covers
a wide range of vulnerabilities. Such categories were identi-
fied through an open card sorting procedure [24], carried out by
the company’s security experts. All the identified categories are
described in Table 3. For example, the CVE Details website, a
widely used resource for collecting information about vulnera-
bilities [25], proposes a list of 13 conceptual categories for vul-
nerabilities. All the CVE Details categories are covered by our
taxonomy, with the exception of two vulnerability classes that
mainly affect web applications: CSRF10, and HTTP Response
Splitting11 (as shown in Table 4). Overall, only about 2% of all
the vulnerabilities collected by the CVE details website fall in
these two categories.

According to our taxonomy, the example vulnerability (il-
lustrated in Section 2.1) belongs to the Information Disclosure
and/or Arbitrary File Read category, since this vulnerability
might allow remote attackers to ”obtain sensitive information”,
as stated in its description.

To automatically classify vulnerabilities according to our tax-
onomy, we trained a set of machine learning (ML) techniques.
This section illustrates the features and the methodology we
used to train the different ML classifiers, while Section 3 de-
scribes the data used as training and test set (below we refer
them as T1 and T2). More formally, given a training set of vul-
nerabilities’ descriptions T1 and a test set of vulnerabilities’ de-
scriptions T2, we automatically classify the vulnerabilities in
T2, by performing the following steps:

1. Text Features: in this step, we use all the descriptions con-
tained in T1 and T2 as base information to build a textual
corpus (indexing the text). We preprocessed the textual
content by (i) applying stop-words removal and stemming
(through Lucene Porter stemmer12) [26], and (ii) remov-
ing some of the information that may cause bias in the
classification. In particular, we analyzed the descriptions
through our information extractor (see Section 2.1) and
removed from the texts the information belonging to the
(i) Software name, (ii) Versions and (iii) Previous versions
classes. Moreover, we discarded all the words containing
numbers and special characters. The output of this step is
a Term-by-Documents matrix M where each column rep-
resents a description and each row represents a term con-
tained in the given description. Thus, each entry Mi, j of

10https://www.owasp.org/index.php/Cross-Site_Request_

Forgery_(CSRF)
11https://www.owasp.org/index.php/HTTP_Response_Splitting
12https://lucene.apache.org/core/6_3_0/analyzers-common/

org/apache/lucene/analysis/en/PorterStemFilter.html
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the matrix represents the weight (or importance) of the i-
th term contained in the j-th description. Similarly to the
work by Khazei et al. [27], we weighted words using the
tf-idf (term frequency - inverse document frequency). This
weight is a statistical measure used to evaluate the impor-
tance of a word in a document, in a collection of docu-
ments. Given fi, j, the frequency for word i in a document
j, Dall, the number of overall documents in a collection,
and Di, the amount of documents containing the word i,
each word i in a document j is weighted according to the
following formula:

wi, j = fi, j ∗ log
Dall

Di

2. Split training and test features: in this step we split the ma-
trix M (the output of the previous step) in two sub-matrices
Mtraining and Mtest. Specifically, Mtraining represents the
matrix containing the descriptions (i.e., the corresponding
columns in M) of T1 and Mtest contains the descriptions of
T2.

3. Oracle building: this step builds the oracle to allow ML
techniques to train from Mtraining and predict on Mtest. As
reported in Section 3.1, all the CVEs considered in our
study have been already assigned by professional devel-
opers and analysts to one of the categories described in
Table 3. Thus, in this step, each description in T1 and T2
is merely associated with the previously assigned label.

4. Classification: This step automatically classifies sentences
relying on the classified descriptions contained in Mtraining

and Mtest. In particular, we experimented (using the Weka
tool [28]) different machine learning algorithms: J48, Ran-
dom Forest, BayesNet, Simple Logistic, the standard prob-
abilistic naive Bayes classifier. The choice of the classi-
fiers for our study is motivated by the effectiveness of these
algorithms when categorizing text [29, 30, 31, 32].

3. Study Design

The goal of this study is to investigate the correctness and
usefulness of CVE summaries generated by CVErizer. The
quality focus concerns the ability of developers and security
engineers to collect salient information contained in CVE de-
scriptions, when supported by our summarization tool. The
perspective is that of researchers interested in evaluating the
effectiveness of automated approaches for CVE summarization
when applied in a real working scenario. We therefore designed
our study to answer the following research question:

• RQ1: To what extent is CVErizer accurate in classify-
ing CVE descriptions? Our first goal is to evaluate the
CVE classification capabilities achieved by our tool.

• RQ2: To what extent does CVErizer help security en-
gineers better manage information contained in CVE

Table 3: Categories of Vulnerabilities
Category Description

Authentication bypass or
Improper Authorization

An exploitation of this issue might allow an attacker
to bypass the required authentication. Or the appli-
cation does not perform properly the authentication
check, when an user attempts to access a resource
without the necessary permissions.

Cross-Site Scripting or
HTML Injection

An exploitation of this issue might allow an attacker
to execute arbitrary script code in the web browser
of the site visitor and steal his cookie-based authen-
tication credentials.

Denial Of Service (DoS)
An exploitation of this issue might allow an attacker
to crash the affected application, denying any further
access.

Directory Traversal
An exploitation of this issue might allow an attacker
to gain read access to arbitrary file content on the
affected system.

Local File Include, Re-
mote File Include and Ar-
bitrary File Upload

An exploitation of this issue might allow an attacker
to include arbitrary remote files containing mali-
cious code. The code could then be executed on
the affected system with the webserver process priv-
ileges.

Information Disclosure
and/or Arbitrary File
Read

An exploitation of this issue might allow an attacker
to get access to arbitrary files on the affected system.

Buffer/Stack/Heap/Integer
Overflow, Format String
and Off-by-One

Input data are copied to an insufficiently sized mem-
ory buffer. An exploitation of this issue might allow
an attacker to execute arbitrary code in the context
of the affected application or cause denial of service
conditions.

Remote Code Execution

An exploitation of this issue might allow an attacker
to execute arbitrary code within the context of the
affected application, potentially allowing an unau-
thorized access or a privilege escalation.

SQL Injection

The vulnerable application does not properly sani-
tize user supplied input data before using them in a
SQL query. An exploitation of this issue might al-
low an attacker to compromise, access and modify
data on the affected system with the database user
process privileges.

Unspecified Vulnerabil-
ity

A successful exploitation of this issue might allow
an attacker to affect confidentiality or integrity or
availability or all of them.This class comprises vul-
nerabilities that could be not assigned to any of the
other categories.

Table 4: CVE Details Categories: mapping with CVErizer’s categories
CVE details Category CVErizer Category
DoS Denial of Service (DoS)
Code Execution Remote Code Execution

Overflow Buffer/Stack/Heap/Integer Overflow, Format String
and Off-by-One

Memory Corruption Buffer/Stack/Heap/Integer Overflow, Format String
and Off-by-One

SQL Injection SQL Injection
XSS Cross-Site Scripting or HTML Injection
Directory Traversal Directory Traversal
HTTP Response Splitting Not Covered
Bypass Something Authentication bypass or Improper Authorization
Gain Information Information Disclosure and/or Arbitrary File Read
Gain Privileges Authentication bypass or Improper Authorization
CSRF Not Covered

File Inclusion Local File Include, Remote File Include and Arbi-
trary File Upload

descriptions? Our aim is to verify whether CVErizer

represents a valid support for developers interested in an-
alyzing CVEs. Thus, stemming from RQ2, we derive two
research subquestions that need to be answered to qualita-
tively and quantitatively assess the practical usefulness of
our summarizer.

– RQ2-a: How do CVE summaries generated by
CVErizer impact time required by security ana-
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Table 5: Dataset
Category CVEs
Authentication bypass or Improper Authorization 183
Cross-Site Scripting or HTML Injection 544
Denial Of Service (DoS) 520
Directory Traversal 133
Local File Include, Remote File Include and Arbitrary File Upload 153
Information Disclosure and/or Arbitrary File Read 388
Buffer/Stack/Heap/ Integer Overflow, Format String and Off-by-One 386
Remote Code Execution 257
SQL Injection 276
Unspecified Vulnerability 529
TOTAL 3369

lysts to analyse CVE descriptions?

– RQ2-b How do developers consider the sum-
maries generated by CVErizer in terms of cor-
rectness, content adequacy, conciseness, and ex-
pressiveness?

3.1. Context

The context of our study is represented by a set of 3369 vul-
nerabilities previously labeled according to the proposed tax-
onomy (see Table 3). Each vulnerability has been downloaded
from the NIST National Vulnerability Database and categorized
by security experts, employed at our industrial partner. Table 5
illustrates the amount of vulnerabilities assigned to each cate-
gory. In particular, “Cross Site Scripting or HTML Injection”
and “Directory Traversal” are the most and least populous cat-
egories of our dataset, respectively.

Listing 2: Example of an Association rule to identify ”Authentication bypass
or Improper Authorization” vulnerabilities
/*

* VULN_01 = "Authentication Bypass or Improper Authorization"

*/

if effects matches

"^.* bypass .*( restriction|permission).*\ textdollar" OR "^.* gain.*

privilege .*\ textdollar"

OR if causes matches

"^.* missing .* access .*( restriction|permission|validation).*\ textdollar"

OR "^.* not.*( restrict|check|enforce).*( access|permission|

validation|use|restriction).*\ textdollar" OR "^.*not.* implement

.*( access|restriction|permission|validation).* control .*\

textdollar"

3.2. Analysis Method

To answer our RQ1 we experimented with the different ma-
chine learning techniques (described in Section 2.2) and com-
pared the performance obtained by each technique, relying on
widely adopted metrics of Information Retrieval: Precision, Re-
call and F-Measure [33]. We trained the machine learning algo-
rithms through a training set (T1) containing 500 vulnerabilities
extracted from our dataset (see Section 3.1), while the remain-
ing vulnerabilities (i.e., 2869 samples) were used as the test
set (T2). In particular, to populate T1 we selected 50 differ-
ent, randomly chosen samples for each category. In addition,
we manually analyzed the vulnerabilities’ descriptions in T1,
to define a set of association rules (i.e., regular expressions).
able to automatically assign a vulnerability to one of the cate-
gories described in Table 3. More specifically, each association
rule checks if some of the causes or effects extracted by the tool

Table 6: Survey Questions
Question Options

Q1
How do you judge the usefulness and
comprehensibility of the provided sum-
maries of CVE descriptions?

Very Low, Low, Medium, High, Very
High

Q2 How difficult is to analyze the provided
summaries of CVE descriptions?

Very Low, Low, Medium, High, Very
High

Q3
How difficult is to analyze CVE de-
scriptions without the proposed sum-
maries?

Very Low, Low, Medium, High, Very
High

Q4

Proportionally, how much time can you
save by analyzing provided summaries
instead of reading original CVE de-
scriptions?

0%, 25%, 50%, 75%, 100%

Q5

Considering only the content of the
summaries of CVE descriptions and
not the way they are presented, do you
think that in the reports?

A. Are not missing any information
B. Are missing some information
C. Are missing some very important in-
formation

Q5.1
If some important information is miss-
ing, can you specify which kinds of in-
formation are missed?

Q6

Considering only the content of the
summaries of CVE and not the way
they are presented, do you think that the
reports?

A. Contain no unnecessary information
B. Contain some unnecessary informa-
tion
C. Contain a lot of unnecessary infor-
mation

Q6.1
If summaries contain some unnec-
essary information, can you specify
which kinds of information are useless?

Q7
Considering only the way the CVE
summaries are presented, and not their
contents, do you think that the reports?

A. Are easy to read and understand
B. Are somewhat readable and under-
standable
C. Are hard to read and understand

Q8
Do you have any suggestion to improve
the summaries and make them more
understandable?

Q9
In conclusion: are the summaries use-
ful for understanding software vulnera-
bilities and preventing from them?

Very Low, Low, Medium, High, Very
High

match particular regular expressions associated with the vulner-
ability category, as showed in Listing 2. A total of 27 associ-
ation rules have been defined and used to classify the vulnera-
bilities in T2. Thus, Precision, Recall and F-measure achieved
through association rules have been compared with the results
obtained by the various machine learning algorithms.

To answer RQ2 we performed an experiment involving stu-
dents of the cybersecurity course at Computer Science MSc
(University of Molise) and asking them to complete a survey to
evaluate: (i) the practical usefulness of CVErizer and how it
can facilitate the vulnerabilities analysis process (RQ2-a), and
(ii) the quality of the generated summaries along to 4 widely
adopted dimensions [34, 35, 36] (RQ2-b):

1. Correctness: which assesses the accuracy of the informa-
tion extracted by CVErizer.

2. Content adequacy: which assesses whether the generated
summaries encompass all the salient information to sup-
port developers in the vulnerabilities’ analysis process.

3. Conciseness: to evaluate whether output summaries con-
tain some superfluous information.

4. Expressiveness: which measures the readability and un-
derstandability of the generated summaries.

It is worth highlighting that, during the aforementioned cyber-
security course all the participants in our study were introduced
to penetration testing and vulnerability assessment activities: at
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the time of the experiment, all the students were already fa-
miliar with CVEs, and the ways of using CVE descriptions for
exploiting (or preventing from) security flaws. Moreover, the
CVE framework was already used by the surveyed students in
some training activities during the course.

We randomly sampled 10 CVE records from our dataset and
assigned to each of the sampled CVEs a unique identifier (id,
with 1 ≤ id ≤ 10). We separated the participants in two groups
Group 1 (composed by 7 participants) and Group 2 (comprising
8 participants) and split the experiment in two steps (A and B).
Each study participant has been randomly assigned to one of
the two groups.

During step A of the experiment, each participant of Group
1 analyzed CVE descriptions having 1 ≤ id ≤ 5, to manually
extract relevant information (see Section 2.1) and classify them
according to the categories showed in Table 3. In the same
time, participants of Group 2 analyzed CVE descriptions hav-
ing 6 ≤ id ≤ 10 in the same way. Each participant has also been
asked to report the time taken for extracting the required infor-
mation from each description. Before starting with the infor-
mation extraction task, an example summary related to a CVE
(different from the ones considered in the study) was illustrated
to experiment participants.

During step B of the experiment, participants of Group 1
analyzed the summaries produced by CVErizer for CVE de-
scriptions having 6 ≤ id ≤ 10 with the aim of validating their
content, while subjects in Group 2 evaluated the correctness of
information contained in summaries of CVE descriptions hav-
ing 1 ≤ id ≤ 5. As in the previous step, for each CVE summary
we required to report the time spent for validating it. At the
end of this phase, all the participants were required to answer
the questions of our survey (see Table 6). The correctness of
information contained in all the automatically-generated CVEs
summaries submitted to students, were first manually checked
by two authors of the work.

The time for the entire experiment was 60 minutes: (i) 30
minutes for step A; (ii) 20 minutes for step B; (iii) 10 minutes
for answering the questionnaire.

Moreover, we designed a Feigenbaum test [37], to better un-
derstand the extent to which automatically generated CVE sum-
maries through CVErizer can be distinguished from manually
generated ones. The Feigenbaum Test (FT) can be regarded as
a generalized Turing test in which an intelligent system in a
professional domain should behave as a human expert, and the
behavior can not be distinguished from human experts, when
judged by human experts in the same domain [38]. To this aim,
we reused some of the experimental material used in our experi-
ment with students. Specifically, from each students’ group we
selected the subject belonging to that group that provided the
best responses in the step A of the experiment (i.e., Subject 5 for
Group 1 and Subject 8 for Group 2) and built a dataset contain-
ing 10 CVE summaries, some of them were human-generated,
while the remaining were machine-generated. In particular, for
5 out of 10 CVEs (i.e., CVE-2016-2108, CVE-2016-2560, CVE-
2016-4072, CVE-2016-6289 and CVE-2016-7128) we consid-
ered the vulnerability summaries generated by the selected hu-
man subjects, while for the remaining 5 CVEs (i.e., CVE-2016-

0777, CVE-2015-1927, CVE-2015-5174, CVE-2015-5352 and
CVE-2015-6658) we considered the vulnerability summaries
generated by CVErizer. These CVE summaries (along with
the vulnerabilities’ original descriptions) were provided to 4 se-
curity experts (i.e., 1 lab director and 3 security analysts) em-
ployed at Cybaze S.p.A., who were asked to (i) separately indi-
cate whether each CVE summary was generated either automat-
ically or manually, and (ii) fill the same questionnaire provided
to students. It is worth to highlight that the surveyed security
experts were unaware of the amounts of manually-generated
and machine-generated summaries. Due to the limited avail-
ability of professionals, and the need of obtaining evaluations
on the widest possible spectrum of summaries, we designed the
experiment so that it could be finalized in one hour. In partic-
ular, we scheduled a time slot of 5 minutes for analyzing each
CVE summary, and a time slot of 10 minutes for completing
the survey.

We assessed the proportions of human-machine decisions
for both human-generated and machine-generated summaries.
Moreover, for statistically evaluating the reliability of agree-
ment between the human-machine judgments given by the sur-
veyed experts, we computed the Fleiss’ kappa coefficient [39].

3.3. Research Method
To assess the practical usefulness of CVErizer and answer

RQ2-a, we asked the survey participants to report the time re-
quired for each analyzed description, for performing the infor-
mation extraction (step A of the experiment), and validation
(step B of the experiment) processes. We also asked to express
their opinion on the speed-up introduced by the summaries in
analyzing CVEs (Q4 in Table 6). To qualitatively complement
these data, we asked the participants to judge the usefulness
and comprehensibility of the provided summaries (Q1 in Ta-
ble 6), and to express their opinion on difficulties encountered
when analyzing vulnerabilities’ descriptions, with (Q2 in Table
6) and without (Q3 in Table 6) the proposed summaries.

To answer RQ2-b we asked the participants to manually val-
idate the accuracy of data (step B of the experiment) contained
in each summary (i.e., at least 7 humans validated each sum-
mary). Moreover participants have also been invited to provide
their opinions on: (i) the content adequacy (Q5 in Table 6), (ii)
the conciseness (Q6 in Table 6), and (iii) the expressiveness (Q7
in Table 6) of the provided summaries. We, finally, enrich these
data by asking participants: (i) to provide suggestions for im-
proving summaries (Q8 in Table 6), and (ii) to provide a general
judgment on the usefulness of the summarization approach in a
real working context (Q9 in Table 6). Survey participants were
explicitly instructed to use survey open questions for reporting
(i) missing (Q5.1), or (ii) useless (Q6.1) information contained
in CVErizer summaries, and (iii) general feedback about under-
standability (Q8) of such summaries.

4. Evaluation

We illustrate the results obtained in our experiments, to an-
swer the research questions stated in Section 3.
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Table 7: Classification Results
J48 BayesNet NaiveBayes Simple Logistic RandomForest Association Rules

Class P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Authentication bypass or
Improper Authorization 0.50 0.71 0.59 0.46 0.79 0.58 0.51 0.74 0.61 0.41 0.74 0.53 0.50 0.78 0.61 0.65 0.61 0.63

Cross-Site Scripting or
HTML Injection 0.96 0.83 0.89 0.96 0.94 0.95 0.96 0.92 0.94 0.97 0.83 0.89 0.95 0.93 0.94 0.97 0.86 0.91

Denial of Service
(DoS) 0.57 0.90 0.70 0.86 0.88 0.87 0.85 0.83 0.84 0.65 0.90 0.76 0.78 0.86 0.82 0.87 0.78 0.82

Directory Traversal 0.73 0.70 0.71 0.65 0.82 0.72 0.63 0.76 0.69 0.72 0.76 0.74 0.69 0.76 0.72 0.62 0.66 0.64
Local File Include.

Remote File Include
and Arbitrary File Upload

0.78 0.79 0.78 0.80 0.78 0.79 0.66 0.78 0.71 0.55 0.80 0.65 0.70 0.85 0.76 0.88 0.64 0.74

Information Disclosure
and/or Arbitrary File Read 0.68 0.57 0.62 0.79 0.62 0.69 0.80 0.64 0.71 0.78 0.63 0.70 0.78 0.65 0.71 0.84 0.39 0.53

Buffer/Stack/Heap/

Integer Overflow.
Format String

and Off-by-One

0.85 0.88 0.86 0.76 0.87 0.81 0.71 0.87 0.78 0.85 0.87 0.86 0.75 0.90 0.82 0.86 0.87 0.86

Remote Code Execution 0.66 0.77 0.71 0.68 0.58 0.63 0.58 0.56 0.57 0.65 0.69 0.67 0.73 0.46 0.56 0.77 0.53 0.63
SQL Injection 0.75 0.92 0.83 0.92 0.91 0.92 0.93 0.89 0.91 0.83 0.91 0.87 0.88 0.93 0.91 0.97 0.87 0.92

Unspecified Vulnerability 0.84 0.29 0.43 0.88 0.79 0.83 0.88 0.78 0.83 0.85 0.44 0.58 0.86 0.68 0.76 0.77 0.83 0.80
Weighted Avg. 0.76 0.72 0.71 0.83 0.81 0.81 0.81 0.80 0.80 0.78 0.75 0.74 0.80 0.79 0.79 0.82 0.70 0.76

Table 8: Confusion Matrix related to BayesNet Algorithm
a b c d e f g h i j ←− classi f iedas

105 0 0 0 0 16 1 7 2 2 a = AuthenticationBypass
2 464 4 2 3 6 0 5 6 2 b = CrossSiteScripting
6 0 412 0 0 1 16 4 0 31 c = DenialOfService
5 1 0 68 4 4 1 0 0 0 d = DirectoryTraversal
0 0 0 14 80 3 0 6 0 0 e = FileInclude
66 7 12 18 7 208 5 5 2 8 f = InformationDisclosure
2 2 18 0 0 6 291 17 0 0 g = Overflow
3 2 6 0 4 4 56 120 7 5 h = RemoteCodeExecution
1 5 0 2 2 5 0 4 205 2 i = SQLinjection
39 1 30 1 0 12 12 8 0 376 j = UnspecifiedVulnerability

Table 9: Classification Results with 10 fold cross-validation
J48 BayesNet NaiveBayes Simple Logistic RandomForest

Class P R F1 P R F1 P R F1 P R F1 P R F1
Authentication bypass or
Improper Authorization 0.63 0.65 0.64 0.63 0.79 0.70 0.59 0.83 0.69 0.71 0.67 0.69 0.76 0.69 0.72

Cross-Site Scripting or
HTML Injection 0.95 0.94 0.95 0.96 0.95 0.95 0.97 0.95 0.96 0.94 0.94 0.94 0.94 0.95 0.94

Denial of Service
(DoS) 0.87 0.89 0.88 0.85 0.88 0.86 0.88 0.84 0.86 0.87 0.85 0.86 0.83 0.91 0.87

Directory Traversal 0.76 0.82 0.79 0.69 0.85 0.76 0.71 0.84 0.77 0.77 0.83 0.80 0.78 0.79 0.79
Local File Include.

Remote File Include
and Arbitrary File Upload

0.80 0.75 0.77 0.84 0.78 0.81 0.85 0.78 0.81 0.84 0.79 0.82 0.82 0.77 0.80

Information Disclosure
and/or Arbitrary File Read 0.71 0.75 0.73 0.75 0.74 0.74 0.75 0.73 0.74 0.72 0.77 0.75 0.73 0.80 0.76

Buffer/Stack/Heap/

Integer Overflow.
Format String

and Off-by-One

0.86 0.87 0.86 0.87 0.84 0.85 0.82 0.87 0.85 0.86 0.88 0.87 0.84 0.85 0.85

Remote Code Execution 0.73 0.77 0.75 0.78 0.69 0.73 0.74 0.70 0.72 0.76 0.75 0.76 0.82 0.72 0.77
SQL Injection 0.93 0.92 0.93 0.94 0.90 0.92 0.94 0.90 0.92 0.97 0.92 0.94 0.93 0.92 0.92

Unspecified Vulnerability 0.88 0.81 0.84 0.84 0.81 0.83 0.88 0.80 0.84 0.83 0.82 0.83 0.88 0.82 0.85
Weighted Avg. 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.83 0.84 0.84 0.84 0.84 0.85 0.85 0.85
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4.1. RQ1 results
Table 7 shows, for each class of our taxonomy, the Precision

(P), Recall (R) and F-measure (F1) results obtained through the
different machine learning algorithms (see Section 2), as well
as the classification performance achieved through the defined
regular expressions (i.e., Association Rules). Specifically, the
BayesNet classifier results the best performing classifier with
an overall precision of 83%, a recall of 81% and a F-measure
of 81%. This specific algorithm achieves the best F-measure
results in 5 out of 10 categories (i.e., “Cross Site Scripting or
HTML Injection”, “Denial of Service”, “Local File Include,
Remote File Include and Arbitrary File Upload”, “SQL Injec-
tion” and “Unspecified Vulnerability”) and three of these cat-
egories (i.e., “Cross Site Scripting or HTML Injection”, “De-
nial of Service” and “Unspecified Vulnerability”) are the most
densely populated ones in our dataset.

On the other hand, the J48 Classifier achieved the worst clas-
sification results with a general precision of 76%, a recall of
72% and an F-measure of 71%. Indeed, we observe that the
J48 machine learning algorithm obtained the worst F1 measure
results in the three most densely populated categories of our
dataset, along with the “SQL Injection” class.

In Table 8 the confusion matrix related to the best performing
ML algorithm (i.e., BayesNet) is shown. By observing this ma-
trix, we can notice that the main inaccuracies derive from mis-
classifications of vulnerabilities belonging to the (i) “Denial Of
Service” (i.e., 31 samples are erroneously classified as belong-
ing to the “Unspecified Vulnerability” class), (ii) “Information
Disclosure” (i.e., 66 samples are erroneously classified as be-
longing to the “Authentication Bypass” class), (iii) “Remote
Code Execution” (i.e., 56 samples are erroneously identified as
belonging to the “Overflow” class), and (iv) “Unspecified Vul-
nerability” (i.e., 39 samples are erroneously classified as be-
longing to the “Authentication Bypass” class and 30 samples
are wrongly identified as belonging to the “Denial of Service”
class) categories.

Looking deeper into recurrent classification errors, we realize
that (i) many of the items in the “Denial of Service” class and
wrongly identified as belonging to the “Unspecified Vulnerabil-
ity” category are positioned by the algorithm in the “Unspec-
ified Vulnerability” category probably due to the fact that they
report “unspecified vulnerability . . . affect availability” in the
descriptions. Moreover, (ii) in many of the items in the “In-
formation Disclosure” class and wrongly identified as belong-
ing to the “Authentication Bypass” class, keywords as “bypass
security mechanism” or “bypass security restriction” appear-
ing in their descriptions could lead the ML model to assign
the wrong category. Furthermore, (iii) many of the items ac-
tually belonging to the “Remote Code Execution” category and
classified as belonging to “Overflow”, contain the keywords
“Buffer Error” in their description. Finally, as previously men-
tioned, (iv) vulnerabilities of the “Unspecified Vulnerability”
are sometimes positioned by the ML algorithm in the “Authen-
tication Bypass” (when the descriptions contain keywords like
“gain privilege”) or in the “Denial of Service” (when the de-
scriptions contain keywords like “cause denial of service”) cat-
egories.

Whilst we achieved promising performance, further research
is needed to limit inaccuracies in the results, as erroneous cat-
egorizations could lead experts to underestimate (or overrate)
risks that could arise from specific vulnerabilities (e.g., it may
be erroneously assigned a low-level priority to a vulnerabil-
ity actually belonging to the “Denial of Service” category but
wrongly classified as “Unspecified Vulnerability”, even if the
assessor could be interested in first mitigating unavailability
flaws of the system).

The classification through association rules (Assn. Rules)
produced very promising results with a better F1-measure (i.e.,
76%) than two (i.e., J48 and SimpleLogistic) out of five ma-
chine learning classifiers. In particular, association rules ob-
tained a quite similar precision (82% related to Assn. Rules
and 83% related to BayesNet) with the best performing clas-
sification algorithm (i.e., BayesNet) but a lower recall. This
emerges from the fact that association rules approach obtains
the best precision results (outperforming all the ML techniques)
in 8 out of 10 categories. Thus, we argue that the definition of
more rules (i.e., actually 27 total rules have been defined), could
improve the overall recall (and, consequently, the F1-measure)
of this approach. For instance, the recall results achieved by this
approach in the “Information Disclosure and/or Arbitrary File
Read” and “Remote Code Execution” classes are very poor and
the definition of new rules for these two categories may improve
these outcomes (and, consequently, the overall performance).

To mitigate concerns related to overfitting and asymmetric
sampling, we repeated the classification experiment by apply-
ing 10-fold cross-validation. Table 9 reports the results of this
experiment, in which we can observe improvements in the F1-
measure ranging from 0.03 (i.e., BayesNet) to 0.13 (i.e., J48)
when compared with the previously obtained results. More-
over, in this new setting the best performing classification al-
gorithm resulted RandomForest, probably due to the fact that
more precise decision trees may be inferred when considering
higher numbers of points in the training set (i.e., in each run of
the 10-fold cross-validation the training set was composed by
90% of items in the overall dataset).

Summary RQ1: Among all the experimented classifiers, the
BayesNet algorithm achieves the best classification results in
terms of both precision (83%), recall (81%) and F-measure
(81%). Very promising results are also obtained by the de-
fined association rules, that in 8 out of 10 categories achieve
the best precision results.

4.2. RQ2 results
In this section, we report the results concerning our RQ2.

4.2.1. RQ2-a results
All the subjects involved in our experiment considered CVE

summaries time-saving. In particular, 66.7% of survey respon-
dents (10 out of 15) replied that CVErizer allowed them to save
at least 75% of the time that they would otherwise have spent on
manually analyzing vulnerabilities. Even if 2 subjects answered
that the saved time was even 100%, these answers should not be
considered, as a 100% time reduction would be acceptable only
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Figure 3: Tasks’ Completion Times

in the case in which the vulnerability assessment and prioriti-
zation processes were fully automated. The remaining 3 sub-
jects (20%) affirmed that CVE summaries saved 50% of their
time. These results are related to the time saving capability of
summaries perceived by the participants. Since this measure
is fairly subjective, a more quantitative evaluation is required.
In order to avoid a biased estimation of these results, we com-
pared the information extraction times declared by subjects in
step A of the experiment with the validation times reported by
the participants in step B of the experiment (see Section 3.2).
Figure 3 shows the distributions of times taken by the partici-
pants for (i) extracting data from each vulnerability’s descrip-
tion (i.e., step A of the experiment), and (ii) validating each
summary (i.e., step B of the experiment). Specifically, the dif-
ference between the two distributions is statistically significant
(the Mann-Whitney U test [40] returned a p−value << 0.0001)
with a large effect size (d = 0.76), measured through the Cliff’s
delta [41]. These results suggest that, when supported by our
summarization approach, participants spent on average 50%
less time for analyzing vulnerabilities. It is worth noticing that,
when performing vulnerability assessment activities (especially
for third parties), security experts are required to extract salient
information from vulnerabilities descriptions, in order to (i)
profile security flaws that could affect company’s assets, and,
consequently, (ii) prioritize the mitigation of defects that could
have consequences on the IT infrastructure. Thus, a 50% time
reduction represents just a lower bound, as in a real working
scenario we expect that vulnerability assessors would be not re-
quired to validate each single report.

From a qualitative point of view, all the subjects consid-
ered the provided summaries highly/enough useful and com-
prehensible (see Q1 in Table 10). In particular, 60% of par-
ticipants (9 out of 15) considered the summaries highly (or
very highly) useful and comprehensible. Only 2 participants
out of 15 (13.3%) replied that analyzing vulnerabilities with
the provided summaries is hard (see Q2 in Table 10), while the
same activity without the summaries is considered challenging
or very challenging by 46.7% (7 out of 15) of the survey re-
spondents (see Q3 in Table 10).

Summary RQ2-a: Summaries of vulnerabilities’ descrip-
tions help to save about a half of the time required for manu-
ally analyzing vulnerabilities. CVErizer summaries are con-
sidered useful and comprehensible.

Table 10: Aggregated answers

Table 11: Step A and B outputs
Step A Step B

Information class

humans’
output
≡

tool’s
output

humans’
output
,
tool’s
output

labeled
as cor-
rect

labeled
as in-
correct

Software name 88.0% 12.0% 89.3% 10.7%
Version 74.7% 25.3% 94.7% 5.3%

Previous version 92.0% 8.0% 98.7% 1.3%
Vulnerability name 82.7% 17.3% 97.3% 2.7%

Attacker 90.7% 9.3% 94.7% 5.3%
Cause 30.7% 69.3% 62.7% 37.3%
Effect 66.7% 33.3% 88.0% 12.0%

Vulnerability category 74.4% 25.3% 62.7% 37.3%
Average 75.0% 25.0% 86.0% 14.0%

4.2.2. RQ2-b results
Table 11 reports for each information class (each row) the av-

erage percentage of times that (i) participants used to extract the
same information the tool extracted, (ii) subjects extracted an
information differing from tool’s output, (iii) participants used
to label the data reported by the CVErizer summaries as correct,
and (iv) subjects labeled information contained in summaries
as incorrect. On average, 86% of data extracted by our tool has
been considered correct by the participants and in 75% of cases
the information reported in summaries coincides with the infor-
mation extracted by humans. According to study participants,
the tool exhibits an high accuracy (88% and up) in extracting
(i) software name, (ii) version, (iii) previous version, (iv) vul-
nerability name, (v) attacker, and (vi) effect information, while
it achieves lower performance (less than 65%) in mining cause
and category information (step B of the experiment). In partic-
ular, in 69.3% of cases subjects extracted a cause differing from
the cause contained in the summary.

However, comparing the results obtained in the two steps
of the experiment, we can notice some discrepancies between
the outcomes of Step A (which consists in the manual extrac-
tion of the information related to CVEs) and the achievements
of Step B (which consists in the validation of information ex-
tracted by our tool). In particular, for Cause and Effect informa-
tion classes, while in Step A the percentages of times that sub-
jects reported an information differing from the one extracted
by the tool are considerable (i.e., 69.3% and 33.3%, respec-
tively), in Step B participants labeled as incorrect the informa-
tion extracted by the tool fewer times (i.e., 37.3% and 12.0%,
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Table 12: Examples of CVEs used in our experiment
CVE Description

CVE-2015-
6658

Cross-site scripting (XSS) vulnerability in the Autocomplete
system in Drupal 6 x before 6 37 and 7 x before 7 39 allows
remote attackers to inject arbitrary web script or HTML via a
crafted URL, related to uploading files.

CVE-2016-
6289

Integer overflow in the virtual file ex function in path-0 in
PHP before 5 5 38, 5 6 x before 5 6 24, and 7 x before 7 0 9
allows remote attackers to cause a denial of service stack-
based buffer overflow) or possibly have unspecified other im-
pact via a crafted extract operation on a ZIP archive.

CVE-2016-
7128

The exif process IFD in TIFF function in path-0 in PHP be-
fore 5 6 25 and 7 x before 7 0 10 mishandles the case of a
thumbnail offset that exceeds the file size, which allows remote
attackers to obtain sensitive information from process memory
via a crafted TIFF image.

respectively). Thus, we perform a qualitative analysis of the
results achieved in Step A of the experiment, by investigat-
ing more in depth the differences between manually extracted
information and the tool’s outputs. Such qualitative analysis
highlights the tool’s usefulness in correctly extracting the right
amount of information needed by security teams or vulnerabil-
ity assessors to have a quick overview of semantic information
related to a generic vulnerability. In Table 12 some of the CVEs
(with the related descriptions) discussed in our analysis are re-
ported. In particular, CVErizer helps to avoid human errors
made in extracting valuable information from CVEs. For in-
stance, for CVE-2016-7128 (illustrated in Table 12), the tool
correctly indicated “crafted TIFF image” as the main cause
of the vulnerability, while 4 (out of 7) participants wrongly
reported “The exif process IFD in TIFF function in path-0”
which represents the function and the path involved by the
vulnerability, but not the cause, and 2 (out of 7) participants
have reported “Process memory via a crafted TIFF image in
the exif process IFD in TIFF function in path-0” which is a
partially wrong information because, along with the cause, it
also includes the function and the path information, which is
not required. Another example is related to CVE-2015-6658

(detailed in Table 12), for which the tool correctly indicated
“crafted URL” as the main cause of the vulnerability, while par-
ticipants reported four different misleading information. In par-
ticular, (i) subject 11 reported “Inject arbitrary”, which does
not represent the cause of the vulnerability, (ii) subject 12 was
not able to identify any cause of the vulnerability, (iii) sub-
ject 15 reported “Autocomplete system”, which is a Drupal’s
module and not the origin of the vulnerability, while (iv) sub-
ject 10 reported “Exploiting crafted URL relating to uploading
files”, which is semantically correct, but it contains words not
included in the CVE description.

The main goal of our summarizer is to present a quick
overview of the information related to unstructured texts (i.e.,
vulnerabilities descriptions) to experts, by providing the right
amount of information useful for supporting humans in the de-
cision making processes. During step A of the experiment, we
observe that in most cases subjects reported more information
than needed. For example, by analyzing the information re-
ported by the participants for CVE-2016-6289 (see Table 12),
we can notice that 4 subjects out of 7 wrongly included the
cause of the vulnerability (e.g., “crafted extract operation”)

and the attacker (e.g., “remote attackers”) information, while
extracting the vulnerability’s effects (e.g., “It allows remote at-
tackers to cause a denial of service or possibly have unspecified
other impact via a crafted extract operation on a ZIP archive”),
instead of just indicating “cause denial service, have unspeci-
fied other impact”, as correctly reported by our tool. A sim-
ilar example occurred for CVE-2016-7128 (shown Table 12),
in which CVErizer correctly extracted “obtain sensitive infor-
mation” as the effect of the vulnerability, while subjects 3,4,6
and 7 wrongly included the cause (e.g., “crafted TIFF image”)
and subjects 3 and 6 also included the attacker (e.g., “remote
attackers”) information for describing the effects of the vulner-
ability.

Table 13: Raw data of the questionnaire concerning the evaluation of sum-
maries.

Content adequacy
Response category Ratings
A) Are not missing any information. 8 (53.3%)
B) Are missing some information but the miss-
ing information is not necessary to have an
overview of software vulnerabilities

7 (46.7)%

C) Are missing some very important informa-
tion

0 (0%)

Conciseness
Response category Ratings
A) Contain no unnecessary information 15 (100%)
B) Contain some unnecessary information 0 (0%)
C) Contain a lot of unnecessary information 0 (0%)

Expressiveness
Response category Ratings
A) Are easy to read and understand 11 (73.3%)
B) Are somewhat readable and understandable 4 (26.7)%
C) Are hard to read and understand 0 (0%)

Nevertheless, as reported in Table 13, none of the subjects
stated that summaries lack very important information to have
an overview of software vulnerabilities. Specifically, 8 subjects
out of 15 (53.3%) considered the summaries’ content to be ade-
quate, while the remaining (46.7%) declared that, even if there
were a possible information loss, our summaries still provide a
complete overview of vulnerabilities. In particular, 4 out of 15
of the survey respondents complained about the fact that some
of the summaries were missing the vulnerability name informa-
tion. Moreover, all the survey participants affirmed that sum-
maries did not contain unnecessary information (see Table 13)
and 73.3% (11 out of 15) of them considered the summaries
easy to read and understand (see Table 13).

In conclusion, 80% (12 out of 15) of participants perceived
CVErizer summaries as highly useful for understanding soft-
ware vulnerabilities and preventing from them (see Q9 in Table
10).

Concerning the Feigenbaum test, in Table 14 the results of
the human-machine decisions provided by the surveyed secu-
rity experts (see Section 3.2) are shown. For summaries gener-
ated by our tool (i.e., CVE-2016-0777, CVE-2015-1927, CVE-
2015-5174, CVE-2015-5352 and CVE-2015-6658) only in 15%
(i.e., 3 out of 20) of the cases the expert decisions fell on the
“Human” category; for manually-generated summaries in 70%
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Table 14: Human-machine decisions as provided by security experts.
CVE Source SubjectA SubjectB SubjectC SubjectD

CVE-2016-0777 CVErizer CVErizer CVErizer CVErizer CVErizer
CVE-2015-1927 CVErizer CVErizer CVErizer CVErizer Human
CVE-2016-2108 Human CVErizer CVErizer Human CVErizer
CVE-2016-2560 Human Human Human CVErizer CVErizer
CVE-2016-4072 Human CVErizer CVErizer CVErizer CVErizer
CVE 2015-5174 CVErizer CVErizer CVErizer CVErizer Human
CVE-2015-5352 CVErizer CVErizer CVErizer CVErizer CVErizer
CVE-2016-6289 Human CVErizer Human Human Human
CVE-2015-6658 CVErizer CVErizer Human CVErizer CVErizer
CVE-2016-7128 Human CVErizer CVErizer CVErizer CVErizer

(i.e., 14 out of 20) of the cases the security experts wrongly
identified the summaries as generated by the tool. This sug-
gests that the summaries provided by our tool are very similar to
the ones provided by humans. Indeed, when surveyed experts
were asked why they often selected the CVErizer option, they
reported that most of the information entailed in the summaries
contained the exact words that were in the descriptions; this led
them to mostly choose this option. In addition, we report that
appraisal agreements between raters, when they are asked to
identify the information source, mostly occur by chance, as the
Fleiss’ kappa test returned k = 0.092.

As discussed in Section 3.2 we also asked the professional
experts participating in our study to answer the questions of
the survey (reported in Table 6). All these experts considered
the summaries provided by our tool highly (2 out of 4) or very
highly (the remaining two subjects) useful (Q1), and most of
them reported that the difficulty of analyzing CVEs through
CVErizer (Q2) is low (50%) or very low (25%). Interestingly,
as students, also all the surveyed professional security experts
believe that such summaries allow to save at least 50% time
otherwise spent in analyzing original CVE descriptions (Q3).
However, only one subject stated that summaries are not miss-
ing any information (Q5), while the remaining 3 subjects re-
ported that, even if the summaries are lacking some information
(e.g., impacts on confidentiality, integrity and availability), it is
not relevant for having an overview of the vulnerability. 75%
of subjects answered that the summaries contain no unneces-
sary information (Q6) and all of them considered the summaries
easy to read and understand (Q7). In conclusion, 75% of sub-
jects regarded the summaries as highly useful for preventing
from vulnerabilities.

Summary RQ2-b: According to the experiment partici-
pants, the summaries generated by CVErizer are reasonably
correct, adequate, concise, and expressive. Moreover, they
are also considered useful to prevent from software vulnera-
bilities.

5. Case Study: Assessing Vulnerabilities of Hypervisors

To estimate how CVErizer could satisfy the needs of security
experts in an industrial scenario and assess the tool’s usefulness
when adopted in specific contexts, in this section we report the
results of a case study conducted at our industrial partner and

aimed at evaluating CVErizer for assessing vulnerabilities that
affect hypervisor systems.

Hypervisors are widely used for malware analysis activi-
ties [42]. To keep the malware under analysis in a controlled en-
vironment and avoid infections of the host environments, it is of
primary importance mitigating hypervisor vulnerabilities [43].
Thus, cyber security companies performing malware analysis
activities should constantly monitor the security flaws affecting
hypervisor technologies, to avoid threats that may compromise
their IT infrastructure.

In the context of an industrial case study conducted at Cy-
baze S.p.A. and aimed at evaluating vulnerabilities that affect
two competing hypervisor products, (i) VMware ESXi13, and
(ii) XEN14, CVErizer has been assessed as enabling technol-
ogy for a simplified, rapid and intuitive assessment of vul-
nerabilities occurring on such tools. In particular, it has been
evaluated the extent to which CVErizer could provide correct
vulnerabilities-related information to security experts, for the
specific context of hypervisor products.

In practice, for conducting the evaluation, we provided a
modified version of CVErizer (i.e., able to summarize cus-
tomized subsets of CVEs) to Davide, a professional penetration
tester employed at Cybaze. Moreover, all the required infor-
mation for modifying/refining XML heuristics has been pro-
vided to Davide. To assess CVErizer effectiveness and evalu-
ate whether modifications/refinements were required for adapt-
ing the original heuristics’ set to the specific context of hyper-
visors, Davide (i) queried the MITRE database, for collecting
all the vulnerabilities affecting either VMWare ESXi or XEN,
(ii) sampled a total of 24 CVEs (i.e., 12 vulnerabilities span-
ning from 2016 to 2018 for each hypervisor), (iii) analyzed the
heuristics’ set, with the aim of applying changes when it was
necessary, (iv) launched our summarizer using the 24 sampled
CVEs as input, (v) manually checked the correctness of the au-
tomatically extracted information from each CVE, and (vi) re-
ported, for each information class and each considered hyper-
visor, the amount of cases in which the tool extracted correct
information from unstructured descriptions.

The results of the assessment performed by Davide, are re-
ported in Figure 4. Our tool, was able to correctly extract the
software name, versions and vulnerability category information
in more than 90% of the cases for both considered hypervi-
sors, while we observe that for the cause, effect, vulnerabil-
ity name and attackers categories, lower levels of accuracy are
achieved. More in-depth, while for the cause information class,
we notice that results obtained for both hypervisors are similar,
when considering the outcomes related to the effect, vulnerabil-
ity name and attacker classes, we report a higher accuracy ('
85%, 100% and ' 70%, respectively) achieved for the XEN hy-
pervisor. These dissimilarities in the results, are manly due to
the way in which the vulnerabilities are described (i.e., vulner-
abilities reported for XEN comply with a more stable template,
while for VMWare ESXi inaccuracies on the cause, effect, vul-

13https://www.vmware.com/products/esxi-and-esx.html
14https://www.cl.cam.ac.uk/research/srg/netos/projects/

archive/xen/

13

https://www.vmware.com/products/esxi-and-esx.html
https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/xen/
https://www.cl.cam.ac.uk/research/srg/netos/projects/archive/xen/


Figure 4: Percentages of cases in which the tool extracted correct information.

nerabiliy name and attacker classes mainly occur for vulnera-
bilities reported in the year 2018), and, according to Davide’s
opinion, the majority of inaccuracies could be fixed by further
refining the heuristics’ set. From this last result, we can ob-
serve how automated approaches aimed at mining information
from unstructured sources are sensitive to mutations in writing
styles. Since writing styles may change at any moment, a way
to easily adapt the approach to such changes is surely desirable.

After the experiment, we asked Davide to provide general
feedback about his experience with CVErizer. In particular,
Davide feels that CVErizer “. . . if well integrated in the com-
panies internal processes, would really be a great help for the
system operators for both the resolution of vulnerabilities and
to make systemists aware about what every single vulnerabil-
ity could cause to the entire IT infrastructure . . . ”. During the
assessment, Davide also refined some heuristics to adapt the
tool to the specific context of hypervisors; “. . . in general the
tool was already working correctly; I just added two or three
heuristics (related to the identification of specific causes and
attacker types), and refined some existing NLP heuristics to im-
prove the tool’s output”. In particular, Davide reported that
“. . . the XML grammar used to define heuristics is very easy to
use”. For this reason, Davide found the heuristics set “very sim-
ple to expand/maintain”. Finally, Davide provided us ideas for
improving the tool: “A reminder system with notifications (e.g.,
when new CVEs related to specific assets are discovered) could
improve the reaction time of the system engineers”. Moreover,
according to his opinion “. . . it would be also useful to provide
a functionality for system engineers to require new heuristics
for treating specific CVE cases or extracting particular infor-
mation”.

6. Threats to Validity

Internal validity. These kinds of threats concern any con-
founding factor that could influence our results. We evaluated
CVErizer’s classification capabilities on a set of 3369 vulner-
abilities preliminary labeled by industrial subjects for different
strategic purposes. This might be a potential threat to valid-
ity, since we are not totally aware of the manual coding process
followed by these subjects. In addition, the quality of generated

summaries has been assessed through data provided by human
subjects, hence it could be biased. Moreover, during the ex-
periment, the extraction (step A) and validation (step B) times
have been manually reported by the participants and this could
lead to inaccuracy. To mitigate this issue, we provided detailed
timing instructions to participants (i.e., the starting and stop-
ping of the chronometer are event triggered, we explained to
participants how to recognize these events).

Misunderstanding of some survey questions could have some
impact on the conclusions that can be drawn. To alleviate this
issue, before starting to answer the questionnaire, we carefully
explained each question to participants, and the information
that we expect to gain from it. Furthermore, learning and fa-
tigue effects could have affected the results obtained in the two
tasks performed by study participants, as CVEs in each task
were annotated by students of the same group following the
same order. To alleviate these issues, we fixed reasonable time
limits (30 mins and 20 mins for step A and B, respectively) for
each task.

External validity. These kinds of threats are related to the
generalizability of our findings. Our study is exploratory and
a larger scale validation is necessary. In particular, the results
obtained in our controlled experiment may be specific to the
10 vulnerabilities we have selected. To counteract this issue,
the selected vulnerabilities (i) belong to different categories of
our taxonomy, and (ii) have descriptions which vary in terms
of size, lexicon and contents. Moreover, the majority of sub-
jects involved in our experiment students (see Section 3.2). This
could be a potential threat to validity because professional and
experienced security analysts could perceive (or consider) sum-
maries in a different way. To counteract this issue we addition-
ally surveyed professional security experts, and presented the
results of an industrial case study in which CVErizer has been
used to assess the vulnerabilities affecting hypervisor products.
In addition, we carried out our study on students attending an
advanced course on software security. This course assumes
that such students have basic knowledge about (i) software and
protocols vulnerabilities, and (ii) how to perform vulnerabil-
ity assessment. According to previous work [44], using stu-
dents as subjects in software engineering experiments is per-
fectly reasonable when the study involves basic programming
and comprehension skills. Nevertheless, further studies involv-
ing a larger set of experimental materials and professional sub-
jects are needed, in order to generalize our results.

7. Related Work

This section discusses related work about text summarization
and text mining in vulnerability databases.

7.1. Text Summarization

According to Radef et al. [45], a summary can be defined as
“a text that is produced from one or more texts, that conveys im-
portant information in the original text(s), and that is no longer
than half of the original text(s) and usually, significantly less
than that”. The existing approaches to text summarization are
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extractive or abstractive. The extractive summarization consists
of extracting parts of the input document and combines them to
form a shorter summary [46, 47]. While extractive models can
not use sentences which do not occur in the text, abstractive
summarization consists of producing a brief text that resumes
the source document, using new sentences.

In the software engineering domain, summarization tech-
niques have been employed for helping developers and soft-
ware engineers during different tasks. Specifically, summariza-
tion may result particularly useful for assisting developers dur-
ing decision making processes [48]. Indeed, software artifacts,
such as requirement documents or bug reports, may contain ex-
cessive information and automated summarization approaches
can help developers to find the information necessary for the
task [49]. For example, several research efforts have been de-
voted in summarizing bug reports. Rastkar et al. [50] employed
an existing technique [51], originally conceived for emails and
conversations summarization, to produce summaries of bug re-
ports. Subsequent studies [52, 53, 54, 55] in bug report sum-
marization complemented the Rastkar et al.’s work and used
it as a benchmark for developing or improving summarization
systems [48].

Other studies presented approaches for generating sum-
maries (i) to allow developers better understanding the reasons
behind specific code changes [56, 57], (ii) to help developers
digesting user feedback contained app reviews [36, 58, 59],
or (iii) to recover traceability links between emails and source
code [60]. In this paper, we make use of some techniques previ-
ously employed for locating salient information within unstruc-
tured texts [36, 20] and evaluate the quality of summaries on
content adequacy, conciseness and expressiveness standards, as
it happened in several previous works [35, 36].

7.2. Text mining in vulnerability databases
Several studies [61, 62, 63, 64, 65, 66, 27] use text mining

techniques on CVEs for retrieving textual information from this
repository, in order to perform a variety of tasks.

Bozorgi et al. [61] were the first researchers that focused
on textual information hidden in vulnerabilities databases. Ac-
tually, their work aims to define a more reliable risk score for
vulnerability than the expert evaluation. This is the first differ-
ence with our paper, while the second difference refers to the
approach used. Bozorgi and colleagues employ common algo-
rithms of machine learning, while we propose a new method for
summarizing CVEs.

Le and Loh [62] used Natural Language Processing to sup-
port the automatic derivation of a Vulnerable Property Relation
Graph (VPRG) model based on properties extracted from text-
based vulnerability descriptions. A VPRG graph is not a sum-
mary of the CVE, which is the purpose of CVErizer, but it mod-
els the process of vulnerability exploitation. Moreover authors
leverage existing tools for extracting information from the text,
while we developed a text summarizer specifically tailored for
extracting certain categories of information from a CVE. Sim-
mons et al. [63] propose an issue resolution system (IRS) to de-
tect and extract information from external vulnerability repos-
itories and internal log files to assist with classifying and dis-

seminating defenses. Mokhov et al. [64] used natural language
processing (NLP) and artificial intelligence (AI) methods for
finding segments of code affected by specific vulnerabilities.
This problem is apparently different from the problem faced by
our paper, because authors treat the code as a text and mine
it with classical n-gram, smoothing techniques (add-, Witten-
Bell, MLE, etc.) and machine learning combined with dynamic
programming. Scandariato et al. [67] studied how to predict
the vulnerable components of software, based on text mining
applied to the components’ source code. Glanz et al. [65]
proposed to enrich the National Vulnerability Database (NVD)
with the version ranges of each vulnerable software component
along with the version numbers through a rule-based approach
able to automatically extract this information from the informal
vulnerability description. The authors use an approach based
on entity extraction. We obtain a summary much richer than
the one produced by this solution, and we developed a new ap-
proach of information extraction instead of merely using avail-
able tools. Toloudis et al. [66] employed Text Mining technique
on vulnerabilities’ descriptions for automatically assessing their
severity. In a similar effort, Khazaei et al. [27] showed the po-
tential of text mining for predicting the score of CVSS (Com-
mon Vulnerability Scoring System, i.e., a quantitative metric
which returns a value as severity of a vulnerability). Although
they mine CVE’s description as well as CVErizer, their aim is
not to extract a summary of the CVE. Additionally, they deter-
mine such score by classifying the CVEs with machine learning
rather than extract relevant information from the decriptions.

Differently from these previous works, we propose an ap-
proach for extracting and summarizing useful information from
CVE descriptions, to support security engineers and develop-
ers in making decisions. To the best of authors’ knowledge, no
prior work has proposed highly-extensible approaches for sum-
marizing this kind of artifacts and assessed the quality of the
produced summaries through an end-to-end validation involv-
ing external subjects.

8. Conclusions

The presence of vulnerabilities in software systems and pro-
tocols is the main cause of security attacks. Vulnerabilities may
be directly used by attackers to violate integrity, availability
and confidentiality policies of targeted organizations. Common
Vulnerabilities and Exposures (CVE) Database is a list of com-
mon names for publicly known vulnerabilities, which is used
to provide information about patched vulnerabilities to security
experts. However, the descriptions of these vulnerabilities are
mostly written in natural language. Since for a specific ver-
sion of a specific software might exist tens of vulnerabilities,
it is challenging and time-consuming for a security analyst to
manually check all these vulnerabilities. To cope with this is-
sue, in this paper we presented CVErizer a tool able to (i) au-
tomatically classify software vulnerabilities with high accuracy
(i.e., 81%), and (ii) assist vulnerability assessors in quickly un-
derstanding software vulnerabilities, by providing concise and
reasonably accurate summaries of vulnerabilities’ descriptions.
We evaluated the classification capabilities of our tool (RQ1), as
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well as the usefulness and correctness of summaries (RQ2) by
conducting a controlled experiments involving 15 MSc cyber-
security students. Summaries generated by CVErizer substan-
tially reduce the time required for manually analyzing vulner-
abilities’ descriptions, and are considered highly useful during
vulnerability assessment processes. High usefulness of CVEr-
izer’s summaries has been confirmed by 4 professional security
experts who found machine-generated summaries very similar
to the manually-generated ones. Moreover, we presented the
results of an industrial case study aimed at evaluating CVErizer
when mining relevant information from vulnerabilities related
to two competing hypervisor products.

As future work, we are investigating the use of topic mod-
eling techniques (e.g., LDA) to improve the performance and
cope with the limitations that affect our approach. We are also
exploring the possibility to associate the summary extracted by
the CVEs to the code of vulnerability exploitation which is pro-
vided attached to the CVE description. This could allow to as-
sociate attack strings of code to the type of attack, and improve
Information Security appliances, like firewall and SIEM. More-
over, we plan to enrich CVErizer summaries with remediation
information, to provide, at the same time, an overview of the
vulnerability and the exact steps to prevent from it.
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